

pyvbox

	Introduction
	Install

	Getting started

	Issues

	Compatibility

	Changelog

Library Reference

	virtualbox – main module

	virtualbox.pool – machine pool management

	virtualbox.library_ext – extensions to virtualbox.library

	virtualbox.events – registration, listening and processing

	virtualbox.library – transform of VirtualBox.xidl

	virtualbox.library_base – base types used by library.py

Indices and tables

	Index

	Module Index

	Search Page

Project hosting provided by github.com [https://github.com/mjdorma/pyvbox] and package distribution through PyPi [http://pypi.python.org/pypi/pyvbox].

[mjdorma+pyvbox@gmail.com]

Introduction

What’s in pyvbox:

	A complete implementation of the VirtualBox Main API

	Create a VirtualBox instance and seamlessly explore the potential of
VirtualBox’s amazing Main API

	Pythonic functions and names.

	Introspection, documentation strings, getters and setters, and more...

Project documentation at pythonhosted.org [http://pythonhosted.org/pyvbox/].

Project hosting provided by github.com [https://github.com/mjdorma/pyvbox].

[mjdorma+pyvbox@gmail.com]

Install

Simply run the following:

> python setup.py install

or PyPi [http://pypi.python.org/pypi/pyvbox]:

> pip install pyvbox

Getting started

Exploring the library:

> ipython
In [1]: import virtualbox

In [2]: virtualbox?

In [3]: virtualbox.VirtualBox?

In [4]: virtualbox.library.IMachine?

In [5]: virtualbox.library.MachineState?

In [6]: virtualbox.library.MachineState.teleported?

Listing machines:

> ipython
In [1]: import virtualbox

In [2]: vbox = virtualbox.VirtualBox()

In [3]: print("VM(s):\n + %s" % "\n + ".join([vm.name for vm in vbox.machines]))
VM(s):
 + filestore
 + xpsp3
 + win7
 + win8
 + test_vm

Launch machine, take a screen shot, stop machine:

> ipython
In [1]: import virtualbox

In [2]: vbox = virtualbox.VirtualBox()

In [3]: session = virtualbox.Session()

In [4]: vm = vbox.find_machine('test_vm')

In [5]: progress = vm.launch_vm_process(session, 'gui', '')

In [6]: h, w, _, _, _, _ = session.console.display.get_screen_resolution(0)

In [7]: png = session.console.display.take_screen_shot_to_array(0, h, w, virtualbox.library.BitmapFormat.png)

In [8]: with open('screenshot.png', 'wb') as f:
 : f.write(png)

In [9]: print(session.state)
Locked

In [10]: session.state
Out[10]: SessionState(2)

In [11]: session.state >= 2
Out[11]: True

In [12]: session.console.power_down()

Write text into a window on a running machine:

> ipython
In [1]: import virtualbox

In [2]: vbox = virtualbox.VirtualBox()

In [3]: vm = vbox.find_machine('test_vm')

In [4]: session = vm.create_session()

In [5]: session.console.keyboard.put_keys("Q: 'You want control?'\nA: 'Yes, but just a tad...'")

Execute a command in the guest:

> ipython
In [1]: import virtualbox

In [2]: vbox = virtualbox.VirtualBox()

In [3]: vm = vbox.find_machine('test_vm')

In [4]: session = vm.create_session()

In [5]: gs = session.console.guest.create_session('Michael Dorman', 'password')

In [6]: process, stdout, stderr = gs.execute('C:\\Windows\\System32\\cmd.exe', ['/C', 'tasklist'])

In [7]: print stdout

Image Name PID Session Name Session# Mem Usage
========================= ====== ================ ======== ============
System Idle Process 0 Console 0 28 K
System 4 Console 0 236 K
smss.exe 532 Console 0 432 K
csrss.exe 596 Console 0 3,440 K
winlogon.exe 620 Console 0 2,380 K
services.exe 664 Console 0 3,780 K
lsass.exe 676 Console 0 6,276 K
VBoxService.exe 856 Console 0 3,972 K
svchost.exe 900 Console 0 4,908 K
svchost.exe 1016 Console 0 4,264 K
svchost.exe 1144 Console 0 18,344 K
svchost.exe 1268 Console 0 2,992 K
svchost.exe 1372 Console 0 3,948 K
spoolsv.exe 1468 Console 0 4,712 K
svchost.exe 2000 Console 0 3,856 K
wuauclt.exe 400 Console 0 7,176 K
alg.exe 1092 Console 0 3,656 K
wscntfy.exe 1532 Console 0 2,396 K
explorer.exe 1728 Console 0 14,796 K
wmiprvse.exe 1832 Console 0 7,096 K
VBoxTray.exe 1940 Console 0 3,196 K
ctfmon.exe 1948 Console 0 3,292 K
cmd.exe 1284 Console 0 2,576 K
tasklist.exe 124 Console 0 4,584 K

Using context to manage opened sessions and locks:

> ipython
In [1]: import virtualbox

In [2]: vbox = virtualbox.VirtualBox()

In [3]: vm = vbox.find_machine('test_vm')

In [4]: with vm.create_session() as session:
 ...: with session.console.guest.create_session('Michael Dorman', 'password') as gs:
 ...: print(gs.directory_exists("C:\\Windows"))
 ...:
True

On an already running VM, register to receive on guest keyboard events:

>ipython
In [1]: from virtualbox import library

In [2]: import virtualbox

In [3]: vbox = virtualbox.VirtualBox()

In [4]: vm = vbox.find_machine('test_vm')

In [5]: s = vm.create_session()

In [6]: def test(a):
 ...: print(a.scancodes)
 ...:

In [7]: s.console.keyboard.set_on_guest_keyboard(test)
Out[7]: 140448201250560

In [8]: [35]
[23]
[163]
[151]
[57]
[185]
[35]
[24]
[163]
[152]

See gist [https://gist.github.com/mjdorma] for more pyvbox examples.

Issues

Source code for pyvbox is hosted on GitHub [https://github.com/mjdorma/pyvbox].
Please file bug reports [https://github.com/mjdorma/pyvbox/issues]
with GitHub’s issues system.

Compatibility

pyvbox utilises the VirtualBox project’s vboxapi to gain access to the
underlying COM API primitives. Therefore, pyvbox is compatible on systems
which have a running vboxapi.

Changelog

version 1.2.0 (28/08/2017)

	Searches for vboxapi installed in Anaconda on Windows. (@SethMichaelLarson PR #80)

	Added __lt__ and __gt__ methods for orderability on Python 3. (@SethMichaelLarson PR #82)

version 1.1.0 (02/06/2017)

	IGuest.create_session() now raises a more descriptive error if
not able to connect with a zero-length password. (@SethMichaelLarson PR #70)

	Add sys.executable-derived paths in list to check for vboxapi (@SethMichaelLarson PR #69)

	Fix IGuestProcess.execute() on Python 3.x (@SethMichaelLarson PR #58)

	Fix errors to not output on Windows platforms. (@SethMichaelLarson PR #57)

	Fix error caused by attempting to set any attribute in the COM interface
using setattr raising an error. (Reported by @josepegerent, patch by @SethMichaelLarson PR #74)

version 1.0.0 (18/01/2017)

	Support for 5.0.x VirtualBox.

	Introduce Major.Minor virtualbox build version assertion when creating a VirtualBox
instance.

	Fix to IMachine.export_to (contribution from @z00m1n).

version 0.2.2 (05/08/2015)

	Cleanup managers at exit (reported by @jiml521).

	Add three time check for attribute in xpcom interface object before failing (reported
by @shohamp).

	Update library.py to 4.3.28/src/VBox/Main/idl/VirtualBox.xidl

version 0.2.0

	This change introduces some significant (potential compatability breaking)
updates from the latest VirtualBox.xidl.

	Bug fixes in IMachine (reported by @danikdanik).

	IHost API issue workaround by @wndhydrnt.

version 0.1.6 (01/08/2014)

	Bug fixes (compatability issue with py26 and virtual keyboard).

	Thanks to contributions by @D4rkC4t and @Guilherme Moro.

version 0.1.5 (11/05/2014)

	Improve error handling and documentation of error types.

	Appliance extension.

	Update to latest API (includes Paravirt provider).

	Thanks to contributions by @nilp0inter

version 0.1.4 (09/04/2014)

	Fixed bug in error class container.

version 0.1.3 (04/03/2014)

	Bug fix for API support.

	Added markup generation to library documentation.

	Improved Manager bootstrap design.

	Py3 compatibility (although vboxapi does not support py3).

version 0.1.2 (28/02/2014)

	Bug fix for virtualenv support

	Keyboard scancode decoder [https://gist.github.com/mjdorma/9132605] (Note: coded in the delivery suite on the day of
the birth of my baby girl Sophia.)

	Refactored documentation

version 0.1.1 (17/02/2014)

	Minor improvements

	Additional extensions

	virtualenv support

version 0.1 (05/01/2014)

	As per roadmap v0.1

	type checking baseinteger

	update to latests Xidl

version 0.0.7 (09/10/2013)

	machine pool [http://pythonhosted.org/pyvbox/virtualbox/pool.html]

version 0.0.6 (25/07/2013)

	now with event support [http://pythonhosted.org//pyvbox/virtualbox/events.html]

version 0.0.5 (23/07/2013)

	moved manage into library_ext Interfaces

	made library.py compatible with differences found between xpcom and COM
(Linux Vs Windows)

version 0.0.4 (27/06/2013)

	added execute, context, and keyboard

version 0.0.3 (30/05/2012)

	added manage

version 0.0.2 (28/05/2013)

	library ext module [http://pythonhosted.org/pyvbox/virtualbox/library_ext.html]

version 0.0.1 (27/05/2013)

	packaged

version 0.0.0 (20/05/2013)

	builder

	library primitives

virtualbox – main module

This module is the root module for the pyvbox project. The name ‘virtualbox’
has been chosen to enable explicit naming when using this package. The author
suggests that people new to VirtualBox’s extensive COM interface should take
a moment to delve into the API’s documentation which will assist in
understanding how VirtualBox’s client server module functions.

Code reference

	
virtualbox.import_vboxapi(*args, **kwds)

	This import is designed to help when loading vboxapi inside of
alternative Python environments (virtualenvs etc).

	Return type:	vboxapi module

	
class virtualbox.VirtualBox([interface, manager])

	The VirthalBox class is the primary interface used to interact with a
VirtualBox server. It wraps the IVirtualBox interface which “represents
the main interface exposed by the product that provides virtual machine
management.”

Optionally, this class can be initialised with an already connected COM
IVirtualBox interface or by passing in a Manager object which implements a
virtualbox.Manager get_virthalbox method.

	
class virtualbox.Manager(mtype=None, mparams=None)

	The Manager maintains a single point of entry into vboxapi.

This object is responsible for the construction of
virtualbox.library_ext.ISession and
virtualbox.library_ext.IVirtualBox.

	Parameters:	
	mtype (str (Default None)) – Type of manager i.e. WEBSERVICE.

	mparams (tuple|list (Default None)) – The params that the mtype manager object accepts.

	
manager

	Create a default Manager object

Builds a singleton VirtualBoxManager object.

Note: It is not necessary to build this object when defining a
Session or VirtualBox object as both of these classes will default
to this object’s global singleton during construction.

	
get_virtualbox()

	Return a VirtualBox interface

	Return type:	library.IVirtualBox

	
get_session()

	Return a Session interface

	Return type:	library.ISession

	
cast_object(interface_object, interface_class)

	Cast the obj to the interface class

	Return type:	interface_class(interface_object)

	
bin_path

	return the virtualbox install directory

	Return type:	str

	
__weakref__

	list of weak references to the object (if defined)

	
class virtualbox.WebServiceManager(url='http://localhost/', user='', password='')

	The WebServiceManager extends the base Manager to include the ability
to build a WEBSERVICE type vboxapi interface.

virtualbox.pool – machine pool management

Virtual Machine pool

The MachinePool manages a pool of linked clones against a defined
“root machine”. This module works with multiple processes running on the
host machine at a time. It manages a resource lock over the root virtual
machine to ensure consistency.

In this example the machine win7 has a current version of guest editions
installed and is in a powered off state.

Create multiple clones:

pool = MachinePool('win7')
sessions = []
for i in range(3):
 sessions.append(pool.acquire("Mick", "password"))

You now have three running machines.
for session in sessions:
 with session.guest.create_session("Mick", "password") as gs:
 _, out, _ = gs.execute("ipconfig")
 print(out)

for session in sessions:
 pool.release(session)

A reliable version of the above code would look like this:

pool = MachinePool('win7')
sessions = []
try:
 for i in range(3):
 sessions.append(pool.acquire("Mick", "password"))

 # You now have three running machines.
 for session in sessions:
 with session.guest.create_session("Mick", "password") as gs:
 _, out, _ = gs.execute("ipconfig")
 print(out)

finally:
 for session in sessions:
 try:
 pool.release(session)
 except Exception as err:
 print("Error raised on release: %s" % err)

Code reference

	
class virtualbox.pool.MachinePool(machine_name)

	MachinePool manages a pool of resources and enable cross process
coordination of a linked machine clone.

	
acquire(username, password, frontend='headless')

	Acquire a Machine resource.

	
release(session)

	Release a machine session resource.

virtualbox.library_ext – extensions to virtualbox.library

The virtualbox.library_ext is a container package that makes it simple to
extend and replace the classes that have been automatically generated in
virtualbox.library.

This simplifies the builder code significantly by not having to handle
specific edge cases where bugs have been identified in the VirtualBox.xidl
file. It also makes it simple to redefine default behaviour, or simply add
various sugar to functions in an interface (such as defining defaults for
function parameters).

Code reference

The documentation captured in this reference reflects the extensions or fixes
applied to the default library.py.

	
class virtualbox.library_ext.IVirtualBox([interface, manager])

	The VirtualBox interface object is the primary interface into VirtualBox’s
COM API. The default constructor can take a library.Interface object or
a virtualbox.Manager object.

	
register_on_machine_state_changed(callback)

	The callback function is called with a IMachineStateChangedEvent
argument on a machine state changed event.

def callback(event):
 print("Machine %s state changed to %s" % (event.machine_id,
 event.state))

vbox = virtualbox.VirtualBox()
vbox.register_on_machine_state_changed(callback)

	
register_on_machine_data_changed(callback)

	The callback function is called with a IMachineDataChangedEvent
argument on a machine state changed event.

def callback(event):
 print("Settings data changed for %s" % event.machine_id)

vbox = virtualbox.VirtualBox()
vbox.register_on_machine_data_changed(callback)

	
register_on_machine_registered(callback)

	
The callback function is called with a IMachineRegisteredEvent
argument on a machine registered event.

def callback(event):
 if event.registered:
 action = 'registered'
 else:
 action = 'unregistered'
 print("%s was %s" % (event.machine_id, action))

vbox = virtualbox.VirtualBox()
vbox.register_on_machine_registered(callback)

	
register_on_snapshot_deleted(callback)

	The callback function is called with a ISnapshotDeletedEvent
argument on a snapshot deleted event.

def callback(event):
 print(event.snapshot_id)

vbox = virtualbox.VirtualBox()
vbox.register_on_snapshot_deleted(callback)

	
register_on_snapshot_taken(callback)

	The callback function is called with a ISnapshotTakenEvent
argument on a snapshot taken event.

def callback(event):
 print(event.snapshot_id)

vbox = virtualbox.VirtualBox()
vbox.register_on_snapshot_taken(callback)

	
register_on_snapshot_changed(callback)

	The callback function is called with a ISnapshotChangedEvent
argument on a snapshot changed event.

def callback(event):
 print(event.snapshot_id)

vbox = virtualbox.VirtualBox()
vbox.register_on_snapshot_changed(callback)

	
register_on_guest_property_changed(callback)

	The callback function is called with a IGuestPropertyChangedEvent
argument on a guest property changed event.

def callback(event):
 print("%s %s %s" % (event.name, event.value, event.flags))

vbox = virtualbox.VirtualBox()
vbox.register_on_guest_property_changed(callback)

	
register_on_session_state_changed(callback)

	The callback function is called with a ISessionStateChangedEvent
argument on a session state changed event.

def callback(event):
 print("Session on machine %s is %s" % (event.machine_id,
 event.state))

vbox = virtualbox.VirtualBox()
vbox.register_on_session_state_changed(callback)

	
register_on_event_source_changed(callback)

	The callback function is called with a IEventSourceChangedEvent on a
event source changed event. This occurs when a listener is added or
removed.

def callback(event):
 if event.add:
 action = 'added'
 else:
 action = 'removed'
 print("A listener was %s from vbox's event_source %s" % \
 action)

vbox.register_on_event_source_changed(callback)

	
register_on_extra_data_changed(callback)

	The callback function is called with a IExtraDataChangedEvent
argument on a extra data changed event.

def callback(event):
 print("%s %s=%s" % (event.machine_id, event.key, event.value))

vbox = virtualbox.VirtualBox()
vbox.register_on_extra_data_changed(callback)

	
register_on_extra_data_can_change(callback)

	The callback function is called with a IExtraDataCanChangeEvent
argument on a extra data can change event.

def callback(event):
 if event.key == 'blah':
 print("Veto served")
 event.add_veto("blah is mine...")
 else:
 print("Allow %s %s" % (event.key, event.value))

vbox = virtualbox.VirtualBox()
vbox.register_on_extra_data_can_change(callback)

To see this work simply run the following vboxmanage command:

vboxmanage setextradata global blah winner

	
class virtualbox.library_ext.ISession

	Just like the IVirtualBox interface the ISession can be bootstrapped
from a virtualbox.Manager object. This is special in that it represents
a client process and allows for locking virtual machines.

To reduce complexity over management of an ISession lock, the base class
has been extended to implement the context management protocol.

Using an ISession object:

vbox = virtualbox.VirtualBox()
vm = vbox.find_machine('test_vm')
with vm.create_session() as session:
 #do stuff with the session

	
class virtualbox.library_ext.IGuest

	
	
create_session(user, password[, domain, session_name, timeout_ms])

	This method extends the default IGuest.create_session method by
adding a polling block operation that waits for the guest session to be
ready. It also defaults the values of domain to ‘’ and
session_name to ‘pyvbox’.

If timeout_ms is not equal to 0, this method block until the session
is ready and active for querying the Guest operating system. This test
is performed by polling for the existence of C:autoexec.bat or
/bin/sh. If the timeout is exceeded a VBoxError will be raised.

Returns a IGuestSession object on completion.

	
update_guest_addtions([source, arguments, flags])

	BUG FIX: This method fixes the bug in the definition for the
updateGuestAdditions method. In the API definition this function is
defined to take a list of arguments but the implementation only takes
source and flags.

As an extension to this method, source is now an optional arguemnt.
If the source path for the update ISO is not provided, this method
will attempt to find a copy of the VBoxGuestAdditions.iso file from the
VirtualBox install path.

Returns an IProgress object

	
class virtualbox.library_ext.IGuestSession

	When an IGuestSession is created, it requires that the session is
explicitly closed after its use. This is done by calling the
IGuestSession.close method. To simply this behaviour, the default class
has been extended to implement the context management protocol.

Using an IGuestSession ojbect:

guest = session.console.guest
with guest.create_session('user', 'password') as guest_session:
 #do stuff with the guest session

	
execute(command[, arguments, stdin, environment, flags, priority, affinity, timeout_ms])

	Execute a command in the guest

	
class virtualbox.library_ext.IEventSource

	
	
register_callback(callback, event_type)

	provide a helper function that wraps the events.register_callback
method. callback is the function to be called back when this
IEventSource raises event_type.

	
class virtualbox.library_ext.IKeyboard

	
	
put_keys([press_keys, hold_keys, press_delay])

	Press the keys listed by the press_keys list into the IKeyboard
whilst holding down the hold_keys. Control the press speed by
defining the press_delay which is the number of milliseconds between
each press.

For a full list of defined keys, refer to:

virtualbox.library.IKeyboard.SCANCODES.keys()

	
register_on_guest_keyboard(callback)

	The callback function is called with a IGuestKeyboardEvent argument
when a guest keyboard event occurs.

def callback(event):
 print(event.scancodes)

session.console.keyboard.register_on_guest_keyboard(callback)

	
class virtualbox.library_ext.IMouse

	
	
register_on_guest_mouse(callback)

	The callback function is called with a IGuestMouseEvent argument
when mouse event occurs.

def callback(event):
 print(("%s %s %s" % (event.x, event.y, event.z))

session.console.mouse.set_guest_mouse(callback)

	
class virtualbox.library_ext.IProgress

	
	
__str__()

	Returns a progress string in a human readable format.

	
class virtualbox.library_ext.IMachine

	
	
remove([delete])

	Unregister and delete this Machine. If delete is set to False, the
machine will only be detached and unregistered from the VBoxSvr.

	
clone([snapshot_name_or_id, mode, options, name, uuid, groups, basefolder, register])

	Clone this Machine. The options for this method have been setup to
default create a linked clone. Depending on the mode and the options
VirtualBox will require the Machine to have different state.

To clone from a snapshot, the snapshot_name_or_id value needs to
be defined. This value can be either an ISnapshot object or a unicode
or str value for the name or the id of a snapshot.

If name is not defined, the chosen name will be the name of this
Machine concatenated with ” Clone”. When deciding a final name, this
method will check if the name already exists. If it exists, it will
automatically append ” (N)” to the end of the name string where N is
the number that did not exist.

To understand the complexities behind the options of this method,
please read through the documentation for the
library.IVirtualBox.create_machine and library.IMachine.clone_to
methods.

	
delete_config(media)

	BUG FIX: This method fixes a bug in the interface definition for the
default method name ‘deleteConfig’. As it turns out, the actual name
implemented is ‘delete’.

	
create_session([lock_type, session])

	A helper function to simplify the creation of a ISession lock over
this Machine. lock_type defaults to library.LockType.shared.
If session is not passed in, a new ISession object is created and
returned.

	
launch_vm_process([session, type_p, environment])

	This method sets the default values for the original
IMachine.launch_vm_process. If session is not defined it will be
created and on completion of the launch, will be unlocked. type_p is
set to default ‘gui’ and environment is set to default ‘’.

	
class virtualbox.library_ext.IConsole

	
	
restore_snapshot([snapshot])

	snapshot is now an optional argument. If it is not supplied, an
attempt to pull the machine.current_snapshot is made, if there is no
snapshot available, an Exception is raised.

	
register_on_network_adapter_changed(callback)

	The callback function is called with a INetworkAdapterChangedEvent
argument when a network adapter changed event occurs.

def callback(event):
 adapter = event.network_adapter
 print("Enabled = %s, connected = %s" % (adapter.enabled,
 adapter.cable_connected))

session.console.register_on_network_adapter_changed(callback)

	
register_on_serial_port_changed(callback)

	The callback function is called with a ISerialPortChangedEvent
argument when a serial port changed event occurs.

def callback(event):
 port = event.serial_port
 print("Enabled = %s, path = %s" % (port.enabled,
 port.path))

session.console.register_on_serial_port_changed(callback)

	
register_on_parallel_port_changed(callback)

	The callback function is called with a IParallelPortChangedEvent
argument on a parallel port changed event.

def callback(event):
 port = event.parallel_port
 print("Enabled = %s, path = %s" % (port.enabled,
 port.path))

session.console.register_on_parallel_port_changed(callback)

	
register_on_medium_changed(callback)

	The callback function is called with a IMediumChangedEvent on a
medium changed event.

def callback(event):
 medium = event.medimum_attachment
 print(medium.controller)

session.console.register_on_medium_changed(callback)

	
register_on_clipboard_mode_changed(callback)

	The callback function is called with a IClipboardModeChangedEvent
on a clipboard mode changed event.

def callback(event):
 print(event.clipboard_mode)

session.console.register_on_clipboard_mode_changed(callback)

	
register_on_drag_and_drop_mode_changed(callback)

	The callback function is called with a IDragAndDropModeChangedEvent
on a drag and drop mode changed event.

def callback(event):
 print(event.drag_and_drop_mode)

session.console.register_on_drag_and_drop_mode_changed(callback)

	
register_on_vrde_server_changed(callback)

	The callback function is called with a IVRDEServerChangedEvent
on a drag and drop mode changed event.

def callback(event):
 print("VirtualBox remote display extension server changed")

session.console.register_vdre_server_changed(callback)

	
register_on_additions_state_changed(callback)

	The callback function is called with a IAdditionsStateChangedEvent
argument on a additions state changed event. To find out what has
changed, a probe into the attributes of IGuest is required.

def callback(event):
 print("State changed in IGuest...")

session.console.register_on_additions_state_changed(callback)

	
register_on_shared_folder_changed(callback)

	The callback function is called with a ISharedFolderChangedEvent
argument on a shared folder changed event.

def callback(event):
 print("Folder changed scope %s" % event.scope)

session.console.register_on_shared_folder_changed(callback)

	
register_on_state_changed(callback)

	The callback function is called with a IStateChangedEvent on a
machine state changed event.

def callback(event):
 print("State changed to %s" % event.state)

session.console.register_on_state_changed(callback)

	
register_on_event_source_changed(callback)

	The callback function is called with a IEventSourceChangedEvent on a
event source changed event. This occurs when a listener is added or
removed.

def callback(event):
 if event.add:
 action = 'added'
 else:
 action = 'removed'
 print("A listener was %s from console's event_source %s" % \
 action)

session.console.register_on_event_source_changed(callback)

	
register_on_can_show_window(callback)

	The callback function is called with a ICanShowWindowEvent on a
show window event. This occurs when the console window is to be
activated and brought to the foreground of the desktop of the host PC.
If this behaviour is not desired a call to event.add_veto will stop
this from happening.

def callback(event):
 print("veto this event")
 event.add_veto("No you shall never do this!")

session.console.register_on_can_show_window(callback)

	
register_on_show_window(callback)

	The callback function is called with a IShowWindowEvent on a show
window event. This occurs when the console window is to be activated
and brought to the foreground of the desktop of the host PC.

def callback(event):
 print("Window id = %s" % event.win_id)

session.console.register_on_show_window(callback)

virtualbox.events – registration, listening and processing

The virtualbox.events module is responsible for the registering and
unregistering callback functions against a specific event source and event
type.

All callbacks registered by this module will be cleared atexit.

Code reference

	
virtualbox.events.register_callback(callback, event_source, event_type)

	Register a callback function against an event_source for a given
event_type.

Any object in the VirtualBox API that generates an event aggregates an
event_source (IEventSource) object through its interface object. Specific
event_type’s (VBoxEventType) can be raised through this event_source.

Once a listener has been created and registered through to the VBoxSvr, a
thread is spawned to block on the event_source.get_event call. When an
event (IEvent) is successfully read, the callback will be called with a
type case from the IEvent object to the Interface type that has an id of
specific VBoxEventType that has been listened too.

An Integer is returned from this register_callback which is used as the ID
of the registered callback function.

The following code snippet demonstrates how a callback can be registered
against a specific event_type.

def on_property_change(event):
 print("%s %s %s" % (event.name, event.value, event.flags))

vbox = virtualbox.VirtualBox()
event.register_callback(on_property_change, vbox.event_source,
 library.VBoxEventType.on_guest_property_changed)

	
virtualbox.events.unregister_callback(callback_id)

	Unregister a callback function using the callback_id returned from the
register_callback method.

Each event listener blocks on an event read for 1 second than checks the
listener’s quit Event status.

virtualbox.library – transform of VirtualBox.xidl

The virtualbox.library is generated using the VirtualBox project’s
VirtualBox.xidl file. This file contains a complete definition of the
VirtualBox interface.

pyvbox ships with a builder in it’s root folder called build.py. This builder
is responsible for implementing the code that transforms VirtualBox.xidl into
library.py.

Code reference

This code reference is the result of using automodule to generate
code for the entire virtualbox.library module, followed by autoclass
to generate doc for the extended classes found in library_ext.

virtualbox.library

Welcome to the VirtualBox Main API documentation. This documentation
describes the so-called VirtualBox Main API which comprises all public
COM interfaces and components provided by the VirtualBox server and by the
VirtualBox client library.

VirtualBox employs a client-server design, meaning that whenever any part of
VirtualBox is running – be it the Qt GUI, the VBoxManage command-line
interface or any virtual machine –, a dedicated server process named
VBoxSVC runs in the background. This allows multiple processes working with
VirtualBox to cooperate without conflicts. These processes communicate to each
other using inter-process communication facilities provided by the COM
implementation of the host computer.

On Windows platforms, the VirtualBox Main API uses Microsoft COM, a native COM
implementation. On all other platforms, Mozilla XPCOM, an open-source COM
implementation, is used.

All the parts that a typical VirtualBox user interacts with (the Qt GUI
and the VBoxManage command-line interface) are technically
front-ends to the Main API and only use the interfaces that are documented
in this Main API documentation. This ensures that, with any given release
version of VirtualBox, all capabilities of the product that could be useful
to an external client program are always exposed by way of this API.

The VirtualBox Main API (also called the VirtualBox COM library)
contains two public component classes:
IVirtualBox and ISession, which
implement IVirtualBox and ISession interfaces respectively. These two classes
are of supreme importance and will be needed in order for any front-end
program to do anything useful. It is recommended to read the documentation of
the mentioned interfaces first.

The IVirtualBox class is a singleton. This means that
there can be only one object of this class on the local machine at any given
time. This object is a parent of many other objects in the VirtualBox COM
library and lives in the VBoxSVC process. In fact, when you create an instance
of the IVirtualBox, the COM subsystem checks if the VBoxSVC
process is already running, starts it if not, and returns you a reference to
the VirtualBox object created in this process. When the last reference
to this object is released, the VBoxSVC process ends (with a 5 second delay to
protect from too frequent restarts).

The ISession class is a regular component. You can create
as many Session objects as you need but all of them will live in a
process which issues the object instantiation call. Session objects
represent virtual machine sessions which are used to configure virtual
machines and control their execution.

The naming of methods and attributes is very clearly defined: they all start
with a lowercase letter (except if they start with an acronym), and are using
CamelCase style otherwise. This naming only applies to the IDL description,
and is modified by the various language bindings (some convert the first
character to upper case, some not). See the SDK reference for more details
about how to call a method or attribute from a specific programming language.

	
exception virtualbox.library.VBoxErrorObjectNotFound

	Object corresponding to the supplied arguments does not exist.

	
exception virtualbox.library.VBoxErrorInvalidVmState

	Current virtual machine state prevents the operation.

	
exception virtualbox.library.VBoxErrorVmError

	Virtual machine error occurred attempting the operation.

	
exception virtualbox.library.VBoxErrorFileError

	File not accessible or erroneous file contents.

	
exception virtualbox.library.VBoxErrorIprtError

	Runtime subsystem error.

	
exception virtualbox.library.VBoxErrorPdmError

	Pluggable Device Manager error.

	
exception virtualbox.library.VBoxErrorInvalidObjectState

	Current object state prohibits operation.

	
exception virtualbox.library.VBoxErrorHostError

	Host operating system related error.

	
exception virtualbox.library.VBoxErrorNotSupported

	Requested operation is not supported.

	
exception virtualbox.library.VBoxErrorXmlError

	Invalid XML found.

	
exception virtualbox.library.VBoxErrorInvalidSessionState

	Current session state prohibits operation.

	
exception virtualbox.library.VBoxErrorObjectInUse

	Object being in use prohibits operation.

	
exception virtualbox.library.VBoxErrorPasswordIncorrect

	A provided password was incorrect.

	
exception virtualbox.library.OleErrorFail

	Unspecified error

	
exception virtualbox.library.OleErrorNointerface

	No such interface supported

	
exception virtualbox.library.OleErrorAccessdenied

	General access denied error

	
exception virtualbox.library.OleErrorNotimpl

	Not implemented

	
exception virtualbox.library.OleErrorUnexpected

	Catastrophic failure

	
exception virtualbox.library.OleErrorInvalidarg

	One or more arguments are invalid

	
class virtualbox.library.SettingsVersion(value)

	Settings version of VirtualBox settings files. This is written to
the “version” attribute of the root “VirtualBox” element in the settings
file XML and indicates which VirtualBox version wrote the file.

	
null(0)

	Null value, indicates invalid version.

	
v1_0(1)

	Legacy settings version, not currently supported.

	
v1_1(2)

	Legacy settings version, not currently supported.

	
v1_2(3)

	Legacy settings version, not currently supported.

	
v1_3pre(4)

	Legacy settings version, not currently supported.

	
v1_3(5)

	Settings version “1.3”, written by VirtualBox 2.0.12.

	
v1_4(6)

	Intermediate settings version, understood by VirtualBox 2.1.x.

	
v1_5(7)

	Intermediate settings version, understood by VirtualBox 2.1.x.

	
v1_6(8)

	Settings version “1.6”, written by VirtualBox 2.1.4 (at least).

	
v1_7(9)

	Settings version “1.7”, written by VirtualBox 2.2.x and 3.0.x.

	
v1_8(10)

	Intermediate settings version “1.8”, understood by VirtualBox 3.1.x.

	
v1_9(11)

	Settings version “1.9”, written by VirtualBox 3.1.x.

	
v1_10(12)

	Settings version “1.10”, written by VirtualBox 3.2.x.

	
v1_11(13)

	Settings version “1.11”, written by VirtualBox 4.0.x.

	
v1_12(14)

	Settings version “1.12”, written by VirtualBox 4.1.x.

	
v1_13(15)

	Settings version “1.13”, written by VirtualBox 4.2.x.

	
v1_14(16)

	Settings version “1.14”, written by VirtualBox 4.3.x.

	
v1_15(17)

	Settings version “1.15”, written by VirtualBox 5.0.x.

	
v1_16(18)

	Settings version “1.16”, written by VirtualBox 5.1.x.

	
future(99999)

	Settings version greater than “1.15”, written by a future VirtualBox version.

	
future = SettingsVersion(99999)

	

	
null = SettingsVersion(0)

	

	
v1_0 = SettingsVersion(1)

	

	
v1_1 = SettingsVersion(2)

	

	
v1_10 = SettingsVersion(12)

	

	
v1_11 = SettingsVersion(13)

	

	
v1_12 = SettingsVersion(14)

	

	
v1_13 = SettingsVersion(15)

	

	
v1_14 = SettingsVersion(16)

	

	
v1_15 = SettingsVersion(17)

	

	
v1_16 = SettingsVersion(18)

	

	
v1_2 = SettingsVersion(3)

	

	
v1_3 = SettingsVersion(5)

	

	
v1_3pre = SettingsVersion(4)

	

	
v1_4 = SettingsVersion(6)

	

	
v1_5 = SettingsVersion(7)

	

	
v1_6 = SettingsVersion(8)

	

	
v1_7 = SettingsVersion(9)

	

	
v1_8 = SettingsVersion(10)

	

	
v1_9 = SettingsVersion(11)

	

	
class virtualbox.library.AccessMode(value)

	Access mode for opening files.

	
read_only(1)

	

	
read_write(2)

	

	
class virtualbox.library.MachineState(value)

	Virtual machine execution state.

This enumeration represents possible values of the IMachine.state() attribute.

Below is the basic virtual machine state diagram. It shows how the state
changes during virtual machine execution. The text in square braces shows
a method of the IConsole or IMachine interface that performs the given state
transition.

+---------[powerDown()] <- Stuck <--[failure]-+
V |
+-> PoweredOff --+-->[powerUp()]--> Starting --+ | +-----[resume()]-----+
| | | | V |
| Aborted -----+ +--> Running --[pause()]--> Paused
	^	^	
Saved -----------[powerUp()]--> Restoring -+			
^			
	+---+-	-------------------+ +	
	+- OnlineSnapshotting <--[takeSnapshot()]<--+---------------------+		
+-------- Saving <--------[saveState()]<----------+---------------------+			
+-------------- Stopping -------[powerDown()]<----------+---------------------+

Note that states to the right from PoweredOff, Aborted and Saved in the
above diagram are called online VM states. These states
represent the virtual machine which is being executed in a dedicated
process (usually with a GUI window attached to it where you can see the
activity of the virtual machine and interact with it). There are two
special pseudo-states, FirstOnline and LastOnline, that can be used in
relational expressions to detect if the given machine state is online or
not:

if (machine.GetState() >= MachineState_FirstOnline &&
machine.GetState() <= MachineState_LastOnline)
{
...the machine is being executed...
}

When the virtual machine is in one of the online VM states (that is, being
executed), only a few machine settings can be modified. Methods working
with such settings contain an explicit note about that. An attempt to
change any other setting or perform a modifying operation during this time
will result in the @c VBOX_E_INVALID_VM_STATE error.

All online states except Running, Paused and Stuck are transitional: they
represent temporary conditions of the virtual machine that will last as
long as the operation that initiated such a condition.

The Stuck state is a special case. It means that execution of the machine
has reached the “Guru Meditation” condition. This condition indicates an
internal VMM (virtual machine manager) failure which may happen as a
result of either an unhandled low-level virtual hardware exception or one
of the recompiler exceptions (such as the too-many-traps
condition).

Note also that any online VM state may transit to the Aborted state. This
happens if the process that is executing the virtual machine terminates
unexpectedly (for example, crashes). Other than that, the Aborted state is
equivalent to PoweredOff.

There are also a few additional state diagrams that do not deal with
virtual machine execution and therefore are shown separately. The states
shown on these diagrams are called offline VM states (this includes
PoweredOff, Aborted and Saved too).

The first diagram shows what happens when a lengthy setup operation is
being executed (such as IMachine.attach_device()).

+----------------------------------(same state as before the call)------+
| |
+-> PoweredOff --+ |
| | |
|-> Aborted -----+-->[lengthy VM configuration call] --> SettingUp -----+
| |
+-> Saved -------+

The next two diagrams demonstrate the process of taking a snapshot of a
powered off virtual machine, restoring the state to that as of a snapshot
or deleting a snapshot, respectively.

+----------------------------------(same state as before the call)------+
| |
+-> PoweredOff --+ |
| +-->[takeSnapshot()] ------------------> Snapshotting -+
+-> Aborted -----+

+-> PoweredOff --+
| |
| Aborted -----+-->[restoreSnapshot()]-------> RestoringSnapshot -+
| | [deleteSnapshot()]-------> DeletingSnapshot --+
+-> Saved -------+ |
| |
+---(Saved if restored from an online snapshot, PoweredOff otherwise)---+

For whoever decides to touch this enum: In order to keep the
comparisons involving FirstOnline and LastOnline pseudo-states valid,
the numeric values of these states must be correspondingly updated if
needed: for any online VM state, the condition
FirstOnline <= state <= LastOnline must be
@c true. The same relates to transient states for which
the condition FirstOnline <= state <= LastOnline must be
@c true.

	
null(0)

	Null value (never used by the API).

	
powered_off(1)

	The machine is not running and has no saved execution state; it has
either never been started or been shut down successfully.

	
saved(2)

	The machine is not currently running, but the execution state of the machine
has been saved to an external file when it was running, from where
it can be resumed.

	
teleported(3)

	The machine was teleported to a different host (or process) and then
powered off. Take care when powering it on again may corrupt resources
it shares with the teleportation target (e.g. disk and network).

	
aborted(4)

	The process running the machine has terminated abnormally. This may
indicate a crash of the VM process in host execution context, or
the VM process has been terminated externally.

	
running(5)

	The machine is currently being executed.

For whoever decides to touch this enum: In order to keep the
comparisons in the old source code valid, this state must immediately
precede the Paused state.

@todo Lift this spectacularly wonderful restriction.

	
paused(6)

	Execution of the machine has been paused.

For whoever decides to touch this enum: In order to keep the
comparisons in the old source code valid, this state must immediately
follow the Running state.

@todo Lift this spectacularly wonderful restriction.

	
stuck(7)

	Execution of the machine has reached the “Guru Meditation”
condition. This indicates a severe error in the hypervisor itself.

bird: Why this uncool name? Could we rename it to “GuruMeditation” or
“Guru”, perhaps? Or are there some other VMM states that are
intended to be lumped in here as well?

	
teleporting(8)

	The machine is about to be teleported to a different host or process.
It is possible to pause a machine in this state, but it will go to the
@c TeleportingPausedVM state and it will not be
possible to resume it again unless the teleportation fails.

	
live_snapshotting(9)

	A live snapshot is being taken. The machine is running normally, but
some of the runtime configuration options are inaccessible. Also, if
paused while in this state it will transition to
@c OnlineSnapshotting and it will not be resume the
execution until the snapshot operation has completed.

	
starting(10)

	Machine is being started after powering it on from a
zero execution state.

	
stopping(11)

	Machine is being normally stopped powering it off, or after the guest OS
has initiated a shutdown sequence.

	
saving(12)

	Machine is saving its execution state to a file.

	
restoring(13)

	Execution state of the machine is being restored from a file
after powering it on from the saved execution state.

	
teleporting_paused_vm(14)

	The machine is being teleported to another host or process, but it is
not running. This is the paused variant of the
@c Teleporting state.

	
teleporting_in(15)

	Teleporting the machine state in from another host or process.

	
fault_tolerant_syncing(16)

	The machine is being synced with a fault tolerant VM running elsewhere.

	
deleting_snapshot_online(17)

	Like @c DeletingSnapshot, but the merging of media is ongoing in
the background while the machine is running.

	
deleting_snapshot_paused(18)

	Like @c DeletingSnapshotOnline, but the machine was paused when the
merging of differencing media was started.

	
online_snapshotting(19)

	Like @c LiveSnapshotting, but the machine was paused when the
merging of differencing media was started.

	
restoring_snapshot(20)

	A machine snapshot is being restored; this typically does not take long.

	
deleting_snapshot(21)

	A machine snapshot is being deleted; this can take a long time since this
may require merging differencing media. This value indicates that the
machine is not running while the snapshot is being deleted.

	
setting_up(22)

	Lengthy setup operation is in progress.

	
snapshotting(23)

	Taking an (offline) snapshot.

	
first_online(5)

	Pseudo-state: first online state (for use in relational expressions).

	
last_online(19)

	Pseudo-state: last online state (for use in relational expressions).

	
first_transient(8)

	Pseudo-state: first transient state (for use in relational expressions).

	
last_transient(23)

	Pseudo-state: last transient state (for use in relational expressions).

	
aborted = MachineState(4)

	

	
deleting_snapshot = MachineState(21)

	

	
deleting_snapshot_online = MachineState(17)

	

	
deleting_snapshot_paused = MachineState(18)

	

	
fault_tolerant_syncing = MachineState(16)

	

	
first_online = MachineState(5)

	

	
first_transient = MachineState(8)

	

	
last_online = MachineState(19)

	

	
last_transient = MachineState(23)

	

	
live_snapshotting = MachineState(9)

	

	
null = MachineState(0)

	

	
online_snapshotting = MachineState(19)

	

	
paused = MachineState(6)

	

	
powered_off = MachineState(1)

	

	
restoring = MachineState(13)

	

	
restoring_snapshot = MachineState(20)

	

	
running = MachineState(5)

	

	
saved = MachineState(2)

	

	
saving = MachineState(12)

	

	
setting_up = MachineState(22)

	

	
snapshotting = MachineState(23)

	

	
starting = MachineState(10)

	

	
stopping = MachineState(11)

	

	
stuck = MachineState(7)

	

	
teleported = MachineState(3)

	

	
teleporting = MachineState(8)

	

	
teleporting_in = MachineState(15)

	

	
teleporting_paused_vm = MachineState(14)

	

	
class virtualbox.library.SessionState(value)

	Session state. This enumeration represents possible values of
IMachine.session_state() and ISession.state()
attributes.

	
null(0)

	Null value (never used by the API).

	
unlocked(1)

	In IMachine.session_state() , this means that the machine
is not locked for any sessions.

In ISession.state() , this means that no machine is
currently locked for this session.

	
locked(2)

	In IMachine.session_state() , this means that the machine
is currently locked for a session, whose process identifier can
then be found in the IMachine.session_pid() attribute.

In ISession.state() , this means that a machine is
currently locked for this session, and the mutable machine object
can be found in the ISession.machine() attribute
(see IMachine.lock_machine() for details).

	
spawning(3)

	A new process is being spawned for the machine as a result of
IMachine.launch_vm_process() call. This state also occurs
as a short transient state during an IMachine.lock_machine()
call.

	
unlocking(4)

	The session is being unlocked.

	
locked = SessionState(2)

	

	
null = SessionState(0)

	

	
spawning = SessionState(3)

	

	
unlocked = SessionState(1)

	

	
unlocking = SessionState(4)

	

	
class virtualbox.library.CPUPropertyType(value)

	Virtual CPU property type. This enumeration represents possible values of the
IMachine get- and setCPUProperty methods.

	
null(0)

	Null value (never used by the API).

	
pae(1)

	This setting determines whether VirtualBox will expose the Physical Address
Extension (PAE) feature of the host CPU to the guest. Note that in case PAE
is not available, it will not be reported.

	
long_mode(2)

	This setting determines whether VirtualBox will advertise long mode
(i.e. 64-bit guest support) and let the guest enter it.

	
triple_fault_reset(3)

	This setting determines whether a triple fault within a guest will
trigger an internal error condition and stop the VM (default) or reset
the virtual CPU/VM and continue execution.

	
apic(4)

	This setting determines whether an APIC is part of the virtual CPU.
This feature can only be turned off when the X2APIC feature is off.

	
x2_apic(5)

	This setting determines whether an x2APIC is part of the virtual CPU.
Since this feature implies that the APIC feature is present, it
automatically enables the APIC feature when set.

	
apic = CPUPropertyType(4)

	

	
long_mode = CPUPropertyType(2)

	

	
null = CPUPropertyType(0)

	

	
pae = CPUPropertyType(1)

	

	
triple_fault_reset = CPUPropertyType(3)

	

	
x2_apic = CPUPropertyType(5)

	

	
class virtualbox.library.HWVirtExPropertyType(value)

	Hardware virtualization property type. This enumeration represents possible values
for the IMachine.get_hw_virt_ex_property() and
IMachine.set_hw_virt_ex_property() methods.

	
null(0)

	Null value (never used by the API).

	
enabled(1)

	Whether hardware virtualization (VT-x/AMD-V) is enabled at all. If
such extensions are not available, they will not be used.

	
vpid(2)

	Whether VT-x VPID is enabled. If this extension is not available, it will not be used.

	
nested_paging(3)

	Whether Nested Paging is enabled. If this extension is not available, it will not be used.

	
unrestricted_execution(4)

	Whether VT-x unrestricted execution is enabled. If this feature is not available, it will not be used.

	
large_pages(5)

	Whether large page allocation is enabled; requires nested paging and a 64-bit host.

	
force(6)

	Whether the VM should fail to start if hardware virtualization (VT-x/AMD-V) cannot be used. If
not set, there will be an automatic fallback to software virtualization.

	
enabled = HWVirtExPropertyType(1)

	

	
force = HWVirtExPropertyType(6)

	

	
large_pages = HWVirtExPropertyType(5)

	

	
nested_paging = HWVirtExPropertyType(3)

	

	
null = HWVirtExPropertyType(0)

	

	
unrestricted_execution = HWVirtExPropertyType(4)

	

	
vpid = HWVirtExPropertyType(2)

	

	
class virtualbox.library.ParavirtProvider(value)

	The paravirtualized guest interface provider. This enumeration represents possible
values for the IMachine.paravirt_provider() attribute.

	
none(0)

	No provider is used.

	
default(1)

	A default provider is automatically chosen according to the guest OS type.

	
legacy(2)

	Used for VMs which didn’t used to have any provider settings. Usually
interpreted as @c None for most VMs.

	
minimal(3)

	A minimal set of features to expose to the paravirtualized guest.

	
hyper_v(4)

	Microsoft Hyper-V.

	
kvm(5)

	Linux KVM.

	
default = ParavirtProvider(1)

	

	
hyper_v = ParavirtProvider(4)

	

	
kvm = ParavirtProvider(5)

	

	
legacy = ParavirtProvider(2)

	

	
minimal = ParavirtProvider(3)

	

	
none = ParavirtProvider(0)

	

	
class virtualbox.library.FaultToleranceState(value)

	Used with IMachine.fault_tolerance_state() .

	
inactive(1)

	No fault tolerance enabled.

	
master(2)

	Fault tolerant master VM.

	
standby(3)

	Fault tolerant standby VM.

	
inactive = FaultToleranceState(1)

	

	
master = FaultToleranceState(2)

	

	
standby = FaultToleranceState(3)

	

	
class virtualbox.library.LockType(value)

	Used with IMachine.lock_machine() .

	
null(0)

	Placeholder value, do not use when obtaining a lock.

	
shared(1)

	Request only a shared lock for remote-controlling the machine.
Such a lock allows changing certain VM settings which can be safely
modified for a running VM.

	
write(2)

	Lock the machine for writing. This requests an exclusive lock, i.e.
there cannot be any other API client holding any type of lock for this
VM concurrently. Remember that a VM process counts as an API client
which implicitly holds the equivalent of a shared lock during the
entire VM runtime.

	
vm(3)

	Lock the machine for writing, and create objects necessary for
running a VM in this process.

	
null = LockType(0)

	

	
shared = LockType(1)

	

	
vm = LockType(3)

	

	
write = LockType(2)

	

	
class virtualbox.library.SessionType(value)

	Session type. This enumeration represents possible values of the
ISession.type_p() attribute.

	
null(0)

	Null value (never used by the API).

	
write_lock(1)

	Session has acquired an exclusive write lock on a machine
using IMachine.lock_machine() .

	
remote(2)

	Session has launched a VM process using
IMachine.launch_vm_process()

	
shared(3)

	Session has obtained a link to another session using
IMachine.lock_machine()

	
null = SessionType(0)

	

	
remote = SessionType(2)

	

	
shared = SessionType(3)

	

	
write_lock = SessionType(1)

	

	
class virtualbox.library.DeviceType(value)

	Device type.

	
null(0)

	Null value, may also mean “no device” (not allowed for
IConsole.get_device_activity()).

	
floppy(1)

	Floppy device.

	
dvd(2)

	CD/DVD-ROM device.

	
hard_disk(3)

	Hard disk device.

	
network(4)

	Network device.

	
usb(5)

	USB device.

	
shared_folder(6)

	Shared folder device.

	
graphics3_d(7)

	Graphics device 3D activity.

	
dvd = DeviceType(2)

	

	
floppy = DeviceType(1)

	

	
graphics3_d = DeviceType(7)

	

	
hard_disk = DeviceType(3)

	

	
network = DeviceType(4)

	

	
null = DeviceType(0)

	

	
shared_folder = DeviceType(6)

	

	
usb = DeviceType(5)

	

	
class virtualbox.library.DeviceActivity(value)

	Device activity for IConsole.get_device_activity() .

	
null(0)

	

	
idle(1)

	

	
reading(2)

	

	
writing(3)

	

	
class virtualbox.library.ClipboardMode(value)

	Host-Guest clipboard interchange mode.

	
disabled(0)

	

	
host_to_guest(1)

	

	
guest_to_host(2)

	

	
bidirectional(3)

	

	
class virtualbox.library.DnDMode(value)

	Drag and drop interchange mode.

	
disabled(0)

	

	
host_to_guest(1)

	

	
guest_to_host(2)

	

	
bidirectional(3)

	

	
class virtualbox.library.Scope(value)

	Scope of the operation.

A generic enumeration used in various methods to define the action or
argument scope.

	
global_p(0)

	

	
machine(1)

	

	
session(2)

	

	
class virtualbox.library.BIOSBootMenuMode(value)

	BIOS boot menu mode.

	
disabled(0)

	

	
menu_only(1)

	

	
message_and_menu(2)

	

	
class virtualbox.library.APICMode(value)

	BIOS APIC initialization mode. If the hardware does not support the
mode then the code falls back to a lower mode.

	
disabled(0)

	

	
apic(1)

	

	
x2_apic(2)

	

	
class virtualbox.library.ProcessorFeature(value)

	CPU features.

	
hw_virt_ex(0)

	

	
pae(1)

	

	
long_mode(2)

	

	
nested_paging(3)

	

	
class virtualbox.library.FirmwareType(value)

	Firmware type.

	
bios(1)

	BIOS Firmware.

	
efi(2)

	EFI Firmware, bitness detected basing on OS type.

	
efi32(3)

	EFI firmware, 32-bit.

	
efi64(4)

	EFI firmware, 64-bit.

	
efidual(5)

	EFI firmware, combined 32 and 64-bit.

	
bios = FirmwareType(1)

	

	
efi = FirmwareType(2)

	

	
efi32 = FirmwareType(3)

	

	
efi64 = FirmwareType(4)

	

	
efidual = FirmwareType(5)

	

	
class virtualbox.library.PointingHIDType(value)

	Type of pointing device used in a virtual machine.

	
none(1)

	No mouse.

	
ps2_mouse(2)

	PS/2 auxiliary device, a.k.a. mouse.

	
usb_mouse(3)

	USB mouse (relative pointer).

	
usb_tablet(4)

	USB tablet (absolute pointer). Also enables a relative USB mouse in
addition.

	
combo_mouse(5)

	Combined device, working as PS/2 or USB mouse, depending on guest
behavior. Using this device can have negative performance implications.

	
usb_multi_touch(6)

	USB multi-touch device. Also enables the USB tablet and mouse devices.

	
combo_mouse = PointingHIDType(5)

	

	
none = PointingHIDType(1)

	

	
ps2_mouse = PointingHIDType(2)

	

	
usb_mouse = PointingHIDType(3)

	

	
usb_multi_touch = PointingHIDType(6)

	

	
usb_tablet = PointingHIDType(4)

	

	
class virtualbox.library.KeyboardHIDType(value)

	Type of keyboard device used in a virtual machine.

	
none(1)

	No keyboard.

	
ps2_keyboard(2)

	PS/2 keyboard.

	
usb_keyboard(3)

	USB keyboard.

	
combo_keyboard(4)

	Combined device, working as PS/2 or USB keyboard, depending on guest behavior.
Using of such device can have negative performance implications.

	
combo_keyboard = KeyboardHIDType(4)

	

	
none = KeyboardHIDType(1)

	

	
ps2_keyboard = KeyboardHIDType(2)

	

	
usb_keyboard = KeyboardHIDType(3)

	

	
class virtualbox.library.BitmapFormat(value)

	Format of a bitmap. Generic values for formats used by
the source bitmap, the screen shot or image update APIs.

	
opaque(0)

	Unknown buffer format (the user may not assume any particular format of
the buffer).

	
bgr(542263106)

	Generic BGR format without alpha channel.
Pixel layout depends on the number of bits per pixel:

32 - bits 31:24 undefined, bits 23:16 R, bits 15:8 G, bits 7:0 B.

16 - bits 15:11 R, bits 10:5 G, bits 4:0 B.

	
bgr0(810698562)

	4 bytes per pixel: B, G, R, 0.

	
bgra(1095911234)

	4 bytes per pixel: B, G, R, A.

	
rgba(1094862674)

	4 bytes per pixel: R, G, B, A.

	
png(541544016)

	PNG image.

	
jpeg(1195724874)

	JPEG image.

	
bgr = BitmapFormat(542263106)

	

	
bgr0 = BitmapFormat(810698562)

	

	
bgra = BitmapFormat(1095911234)

	

	
jpeg = BitmapFormat(1195724874)

	

	
opaque = BitmapFormat(0)

	

	
png = BitmapFormat(541544016)

	

	
rgba = BitmapFormat(1094862674)

	

	
class virtualbox.library.DhcpOpt(value)

	
	
subnet_mask(1)

	

	
time_offset(2)

	

	
router(3)

	

	
time_server(4)

	

	
name_server(5)

	

	
domain_name_server(6)

	

	
log_server(7)

	

	
cookie(8)

	

	
lpr_server(9)

	

	
impress_server(10)

	

	
resourse_location_server(11)

	

	
host_name(12)

	

	
boot_file_size(13)

	

	
merit_dump_file(14)

	

	
domain_name(15)

	

	
swap_server(16)

	

	
root_path(17)

	

	
extension_path(18)

	

	
ip_forwarding_enable_disable(19)

	

	
non_local_source_routing_enable_disable(20)

	

	
policy_filter(21)

	

	
maximum_datagram_reassembly_size(22)

	

	
default_ip_time2_live(23)

	

	
path_mtu_aging_timeout(24)

	

	
ip_layer_parameters_per_interface(25)

	

	
interface_mtu(26)

	

	
all_subnets_are_local(27)

	

	
broadcast_address(28)

	

	
perform_mask_discovery(29)

	

	
mask_supplier(30)

	

	
perform_route_discovery(31)

	

	
router_solicitation_address(32)

	

	
static_route(33)

	

	
trailer_encapsulation(34)

	

	
arp_cache_timeout(35)

	

	
ethernet_encapsulation(36)

	

	
tcp_default_ttl(37)

	

	
tcp_keep_alive_interval(38)

	

	
tcp_keep_alive_garbage(39)

	

	
network_information_service_domain(40)

	

	
network_information_service_servers(41)

	

	
network_time_protocol_servers(42)

	

	
vendor_specific_information(43)

	

	
option_44(44)

	

	
option_45(45)

	

	
option_46(46)

	

	
option_47(47)

	

	
option_48(48)

	

	
option_49(49)

	

	
ip_address_lease_time(51)

	

	
option_64(64)

	

	
option_65(65)

	

	
tftp_server_name(66)

	

	
bootfile_name(67)

	

	
option_68(68)

	

	
option_69(69)

	

	
option_70(70)

	

	
option_71(71)

	

	
option_72(72)

	

	
option_73(73)

	

	
option_74(74)

	

	
option_75(75)

	

	
option_119(119)

	

	
class virtualbox.library.DhcpOptEncoding(value)

	
	
legacy(0)

	

	
hex_p(1)

	

	
class virtualbox.library.VFSType(value)

	Virtual file systems supported by VFSExplorer.

	
file_p(1)

	

	
cloud(2)

	

	
s3(3)

	

	
web_dav(4)

	

	
class virtualbox.library.ImportOptions(value)

	Import options, used with IAppliance.import_machines() .

	
keep_all_ma_cs(1)

	Don’t generate new MAC addresses of the attached network adapters.

	
keep_natma_cs(2)

	Don’t generate new MAC addresses of the attached network adapters when they are using NAT.

	
import_to_vdi(3)

	Import all disks to VDI format

	
import_to_vdi = ImportOptions(3)

	

	
keep_all_ma_cs = ImportOptions(1)

	

	
keep_natma_cs = ImportOptions(2)

	

	
class virtualbox.library.ExportOptions(value)

	Export options, used with IAppliance.write() .

	
create_manifest(1)

	Write the optional manifest file (.mf) which is used for integrity
checks prior import.

	
export_dvd_images(2)

	Export DVD images. Default is not to export them as it is rarely
needed for typical VMs.

	
strip_all_ma_cs(3)

	Do not export any MAC address information. Default is to keep them
to avoid losing information which can cause trouble after import, at the
price of risking duplicate MAC addresses, if the import options are used
to keep them.

	
strip_all_non_natma_cs(4)

	Do not export any MAC address information, except for adapters
using NAT. Default is to keep them to avoid losing information which can
cause trouble after import, at the price of risking duplicate MAC
addresses, if the import options are used to keep them.

	
create_manifest = ExportOptions(1)

	

	
export_dvd_images = ExportOptions(2)

	

	
strip_all_ma_cs = ExportOptions(3)

	

	
strip_all_non_natma_cs = ExportOptions(4)

	

	
class virtualbox.library.CertificateVersion(value)

	X.509 certificate version numbers.

	
v1(1)

	

	
v2(2)

	

	
v3(3)

	

	
unknown(99)

	

	
class virtualbox.library.VirtualSystemDescriptionType(value)

	Used with IVirtualSystemDescription to describe the type of
a configuration value.

	
ignore(1)

	

	
os(2)

	

	
name(3)

	

	
product(4)

	

	
vendor(5)

	

	
version(6)

	

	
product_url(7)

	

	
vendor_url(8)

	

	
description(9)

	

	
license_p(10)

	

	
miscellaneous(11)

	

	
cpu(12)

	

	
memory(13)

	

	
hard_disk_controller_ide(14)

	

	
hard_disk_controller_sata(15)

	

	
hard_disk_controller_scsi(16)

	

	
hard_disk_controller_sas(17)

	

	
hard_disk_image(18)

	

	
floppy(19)

	

	
cdrom(20)

	

	
network_adapter(21)

	

	
usb_controller(22)

	

	
sound_card(23)

	

	
settings_file(24)

	Not used/implemented right now, will be added later in 4.1.x.

	
settings_file = VirtualSystemDescriptionType(24)

	

	
class virtualbox.library.VirtualSystemDescriptionValueType(value)

	Used with IVirtualSystemDescription.get_values_by_type() to describe the value
type to fetch.

	
reference(1)

	

	
original(2)

	

	
auto(3)

	

	
extra_config(4)

	

	
class virtualbox.library.GraphicsControllerType(value)

	Graphics controller type, used with IMachine.unregister() .

	
null(0)

	Reserved value, invalid.

	
v_box_vga(1)

	Default VirtualBox VGA device.

	
vmsvga(2)

	VMware SVGA II device.

	
null = GraphicsControllerType(0)

	

	
v_box_vga = GraphicsControllerType(1)

	

	
vmsvga = GraphicsControllerType(2)

	

	
class virtualbox.library.CleanupMode(value)

	Cleanup mode, used with IMachine.unregister() .

	
unregister_only(1)

	Unregister only the machine, but neither delete snapshots nor detach media.

	
detach_all_return_none(2)

	Delete all snapshots and detach all media but return none; this will keep all media registered.

	
detach_all_return_hard_disks_only(3)

	Delete all snapshots, detach all media and return hard disks for closing, but not removable media.

	
full(4)

	Delete all snapshots, detach all media and return all media for closing.

	
detach_all_return_hard_disks_only = CleanupMode(3)

	

	
detach_all_return_none = CleanupMode(2)

	

	
full = CleanupMode(4)

	

	
unregister_only = CleanupMode(1)

	

	
class virtualbox.library.CloneMode(value)

	Clone mode, used with IMachine.clone_to() .

	
machine_state(1)

	Clone the state of the selected machine.

	
machine_and_child_states(2)

	Clone the state of the selected machine and its child snapshots if present.

	
all_states(3)

	Clone all states (including all snapshots) of the machine, regardless of the machine object used.

	
all_states = CloneMode(3)

	

	
machine_and_child_states = CloneMode(2)

	

	
machine_state = CloneMode(1)

	

	
class virtualbox.library.CloneOptions(value)

	Clone options, used with IMachine.clone_to() .

	
link(1)

	Create a clone VM where all virtual disks are linked to the original VM.

	
keep_all_ma_cs(2)

	Don’t generate new MAC addresses of the attached network adapters.

	
keep_natma_cs(3)

	Don’t generate new MAC addresses of the attached network adapters when they are using NAT.

	
keep_disk_names(4)

	Don’t change the disk names.

	
keep_all_ma_cs = CloneOptions(2)

	

	
keep_disk_names = CloneOptions(4)

	

	
keep_natma_cs = CloneOptions(3)

	

	
link = CloneOptions(1)

	

	
class virtualbox.library.AutostopType(value)

	Autostop types, used with IMachine.autostop_type() .

	
disabled(1)

	Stopping the VM during system shutdown is disabled.

	
save_state(2)

	The state of the VM will be saved when the system shuts down.

	
power_off(3)

	The VM is powered off when the system shuts down.

	
acpi_shutdown(4)

	An ACPI shutdown event is generated.

	
acpi_shutdown = AutostopType(4)

	

	
disabled = AutostopType(1)

	

	
power_off = AutostopType(3)

	

	
save_state = AutostopType(2)

	

	
class virtualbox.library.HostNetworkInterfaceMediumType(value)

	Type of encapsulation. Ethernet encapsulation includes both wired and
wireless Ethernet connections.
IHostNetworkInterface

	
unknown(0)

	The type of interface cannot be determined.

	
ethernet(1)

	Ethernet frame encapsulation.

	
ppp(2)

	Point-to-point protocol encapsulation.

	
slip(3)

	Serial line IP encapsulation.

	
ethernet = HostNetworkInterfaceMediumType(1)

	

	
ppp = HostNetworkInterfaceMediumType(2)

	

	
slip = HostNetworkInterfaceMediumType(3)

	

	
unknown = HostNetworkInterfaceMediumType(0)

	

	
class virtualbox.library.HostNetworkInterfaceStatus(value)

	Current status of the interface.
IHostNetworkInterface

	
unknown(0)

	The state of interface cannot be determined.

	
up(1)

	The interface is fully operational.

	
down(2)

	The interface is not functioning.

	
down = HostNetworkInterfaceStatus(2)

	

	
unknown = HostNetworkInterfaceStatus(0)

	

	
up = HostNetworkInterfaceStatus(1)

	

	
class virtualbox.library.HostNetworkInterfaceType(value)

	Network interface type.

	
bridged(1)

	

	
host_only(2)

	

	
class virtualbox.library.AdditionsFacilityType(value)

	Guest Additions facility IDs.

	
none(0)

	No/invalid facility.

	
v_box_guest_driver(20)

	VirtualBox base driver (VBoxGuest).

	
auto_logon(90)

	Auto-logon modules (VBoxGINA, VBoxCredProv, pam_vbox).

	
v_box_service(100)

	VirtualBox system service (VBoxService).

	
v_box_tray_client(101)

	VirtualBox desktop integration (VBoxTray on Windows, VBoxClient on non-Windows).

	
seamless(1000)

	Seamless guest desktop integration.

	
graphics(1100)

	Guest graphics mode. If not enabled, seamless rendering will not work, resize hints
are not immediately acted on and guest display resizes are probably not initiated by
the guest additions.

	
all_p(2147483646)

	All facilities selected.

	
all_p = AdditionsFacilityType(2147483646)

	

	
auto_logon = AdditionsFacilityType(90)

	

	
graphics = AdditionsFacilityType(1100)

	

	
none = AdditionsFacilityType(0)

	

	
seamless = AdditionsFacilityType(1000)

	

	
v_box_guest_driver = AdditionsFacilityType(20)

	

	
v_box_service = AdditionsFacilityType(100)

	

	
v_box_tray_client = AdditionsFacilityType(101)

	

	
class virtualbox.library.AdditionsFacilityClass(value)

	Guest Additions facility classes.

	
none(0)

	No/invalid class.

	
driver(10)

	Driver.

	
service(30)

	System service.

	
program(50)

	Program.

	
feature(100)

	Feature.

	
third_party(999)

	Third party.

	
all_p(2147483646)

	All facility classes selected.

	
all_p = AdditionsFacilityClass(2147483646)

	

	
driver = AdditionsFacilityClass(10)

	

	
feature = AdditionsFacilityClass(100)

	

	
none = AdditionsFacilityClass(0)

	

	
program = AdditionsFacilityClass(50)

	

	
service = AdditionsFacilityClass(30)

	

	
third_party = AdditionsFacilityClass(999)

	

	
class virtualbox.library.AdditionsFacilityStatus(value)

	Guest Additions facility states.

	
inactive(0)

	Facility is not active.

	
paused(1)

	Facility has been paused.

	
pre_init(20)

	Facility is preparing to initialize.

	
init(30)

	Facility is initializing.

	
active(50)

	Facility is up and running.

	
terminating(100)

	Facility is shutting down.

	
terminated(101)

	Facility successfully shut down.

	
failed(800)

	Facility failed to start.

	
unknown(999)

	Facility status is unknown.

	
active = AdditionsFacilityStatus(50)

	

	
failed = AdditionsFacilityStatus(800)

	

	
inactive = AdditionsFacilityStatus(0)

	

	
init = AdditionsFacilityStatus(30)

	

	
paused = AdditionsFacilityStatus(1)

	

	
pre_init = AdditionsFacilityStatus(20)

	

	
terminated = AdditionsFacilityStatus(101)

	

	
terminating = AdditionsFacilityStatus(100)

	

	
unknown = AdditionsFacilityStatus(999)

	

	
class virtualbox.library.AdditionsRunLevelType(value)

	Guest Additions run level type.

	
none(0)

	Guest Additions are not loaded.

	
system(1)

	Guest drivers are loaded.

	
userland(2)

	Common components (such as application services) are loaded.

	
desktop(3)

	Per-user desktop components are loaded.

	
desktop = AdditionsRunLevelType(3)

	

	
none = AdditionsRunLevelType(0)

	

	
system = AdditionsRunLevelType(1)

	

	
userland = AdditionsRunLevelType(2)

	

	
class virtualbox.library.AdditionsUpdateFlag(value)

	Guest Additions update flags.

	
none(0)

	No flag set.

	
wait_for_update_start_only(1)

	Starts the regular updating process and waits until the
actual Guest Additions update inside the guest was started.
This can be necessary due to needed interaction with the guest
OS during the installation phase.

	
none = AdditionsUpdateFlag(0)

	

	
wait_for_update_start_only = AdditionsUpdateFlag(1)

	

	
class virtualbox.library.GuestSessionStatus(value)

	Guest session status. This enumeration represents possible values of
the IGuestSession.status() attribute.

	
undefined(0)

	Guest session is in an undefined state.

	
starting(10)

	Guest session is being started.

	
started(100)

	Guest session has been started.

	
terminating(480)

	Guest session is being terminated.

	
terminated(500)

	Guest session terminated normally.

	
timed_out_killed(512)

	Guest session timed out and was killed.

	
timed_out_abnormally(513)

	Guest session timed out and was not killed successfully.

	
down(600)

	Service/OS is stopping, guest session was killed.

	
error(800)

	Something went wrong.

	
down = GuestSessionStatus(600)

	

	
error = GuestSessionStatus(800)

	

	
started = GuestSessionStatus(100)

	

	
starting = GuestSessionStatus(10)

	

	
terminated = GuestSessionStatus(500)

	

	
terminating = GuestSessionStatus(480)

	

	
timed_out_abnormally = GuestSessionStatus(513)

	

	
timed_out_killed = GuestSessionStatus(512)

	

	
undefined = GuestSessionStatus(0)

	

	
class virtualbox.library.GuestSessionWaitForFlag(value)

	Guest session waiting flags. Multiple flags can be combined.

	
none(0)

	No waiting flags specified. Do not use this.

	
start(1)

	Wait for the guest session being started.

	
terminate(2)

	Wait for the guest session being terminated.

	
status(4)

	Wait for the next guest session status change.

	
none = GuestSessionWaitForFlag(0)

	

	
start = GuestSessionWaitForFlag(1)

	

	
status = GuestSessionWaitForFlag(4)

	

	
terminate = GuestSessionWaitForFlag(2)

	

	
class virtualbox.library.GuestSessionWaitResult(value)

	Guest session waiting results. Depending on the session waiting flags (for
more information see GuestSessionWaitForFlag) the waiting result
can vary based on the session’s current status.

To wait for a guest session to terminate after it has been
created by IGuest.create_session() one would specify
GuestSessionWaitResult_Terminate.

	
none(0)

	No result was returned. Not being used.

	
start(1)

	The guest session has been started.

	
terminate(2)

	The guest session has been terminated.

	
status(3)

	The guest session has changed its status. The status then can
be retrieved via IGuestSession.status() .

	
error(4)

	Error while executing the process.

	
timeout(5)

	The waiting operation timed out. This also will happen
when no event has been occurred matching the
current waiting flags in a IGuestSession.wait_for() call.

	
wait_flag_not_supported(6)

	A waiting flag specified in the IGuestSession.wait_for() call
is not supported by the guest.

	
error = GuestSessionWaitResult(4)

	

	
none = GuestSessionWaitResult(0)

	

	
start = GuestSessionWaitResult(1)

	

	
status = GuestSessionWaitResult(3)

	

	
terminate = GuestSessionWaitResult(2)

	

	
timeout = GuestSessionWaitResult(5)

	

	
wait_flag_not_supported = GuestSessionWaitResult(6)

	

	
class virtualbox.library.GuestUserState(value)

	State a guest user has been changed to.

	
unknown(0)

	Unknown state. Not being used.

	
logged_in(1)

	A guest user has been successfully logged into
the guest OS.
This property is not implemented yet!

	
logged_out(2)

	A guest user has been successfully logged out
of the guest OS.
This property is not implemented yet!

	
locked(3)

	A guest user has locked its account. This might
include running a password-protected screensaver
in the guest.
This property is not implemented yet!

	
unlocked(4)

	A guest user has unlocked its account.
This property is not implemented yet!

	
disabled(5)

	A guest user has been disabled by the guest OS.
This property is not implemented yet!

	
idle(6)

	A guest user currently is not using the guest OS.
Currently only available for Windows guests since
Windows 2000 SP2.
On Windows guests this function currently only supports
reporting contiguous idle times up to 49.7 days per user.
The event will be triggered if a guest user is not active for
at least 5 seconds. This threshold can be adjusted by either altering
VBoxService’s command line in the guest to
–vminfo-user-idle-threshold
, or by setting the per-VM guest property
/VirtualBox/GuestAdd/VBoxService/–vminfo-user-idle-threshold
with the RDONLYGUEST flag on the host. In both cases VBoxService needs
to be restarted in order to get the changes applied.

	
in_use(7)

	A guest user continued using the guest OS after
being idle.

	
created(8)

	A guest user has been successfully created.
This property is not implemented yet!

	
deleted(9)

	A guest user has been successfully deleted.
This property is not implemented yet!

	
session_changed(10)

	To guest OS has changed the session of a user.
This property is not implemented yet!

	
credentials_changed(11)

	To guest OS has changed the authentication
credentials of a user. This might include changed passwords
and authentication types.
This property is not implemented yet!

	
role_changed(12)

	To guest OS has changed the role of a user permanently,
e.g. granting / denying administrative rights.
This property is not implemented yet!

	
group_added(13)

	To guest OS has added a user to a specific
user group.
This property is not implemented yet!

	
group_removed(14)

	To guest OS has removed a user from a specific
user group.
This property is not implemented yet!

	
elevated(15)

	To guest OS temporarily has elevated a user
to perform a certain task.
This property is not implemented yet!

	
created = GuestUserState(8)

	

	
credentials_changed = GuestUserState(11)

	

	
deleted = GuestUserState(9)

	

	
disabled = GuestUserState(5)

	

	
elevated = GuestUserState(15)

	

	
group_added = GuestUserState(13)

	

	
group_removed = GuestUserState(14)

	

	
idle = GuestUserState(6)

	

	
in_use = GuestUserState(7)

	

	
locked = GuestUserState(3)

	

	
logged_in = GuestUserState(1)

	

	
logged_out = GuestUserState(2)

	

	
role_changed = GuestUserState(12)

	

	
session_changed = GuestUserState(10)

	

	
unknown = GuestUserState(0)

	

	
unlocked = GuestUserState(4)

	

	
class virtualbox.library.FileSeekOrigin(value)

	What a file seek (IFile.seek()) is relative to.

	
begin(0)

	Seek from the beginning of the file.

	
current(1)

	Seek from the current file position.

	
end(2)

	Seek relative to the end of the file. To seek to the position two
bytes from the end of the file, specify -2 as the seek offset.

	
begin = FileSeekOrigin(0)

	

	
current = FileSeekOrigin(1)

	

	
end = FileSeekOrigin(2)

	

	
class virtualbox.library.ProcessInputFlag(value)

	Guest process input flags.

	
none(0)

	No flag set.

	
end_of_file(1)

	End of file (input) reached.

	
end_of_file = ProcessInputFlag(1)

	

	
none = ProcessInputFlag(0)

	

	
class virtualbox.library.ProcessOutputFlag(value)

	Guest process output flags for specifying which
type of output to retrieve.

	
none(0)

	No flags set. Get output from stdout.

	
std_err(1)

	Get output from stderr.

	
none = ProcessOutputFlag(0)

	

	
std_err = ProcessOutputFlag(1)

	

	
class virtualbox.library.ProcessWaitForFlag(value)

	Process waiting flags. Multiple flags can be combined.

	
none(0)

	No waiting flags specified. Do not use this.

	
start(1)

	Wait for the process being started.

	
terminate(2)

	Wait for the process being terminated.

	
std_in(4)

	Wait for stdin becoming available.

	
std_out(8)

	Wait for data becoming available on stdout.

	
std_err(16)

	Wait for data becoming available on stderr.

	
none = ProcessWaitForFlag(0)

	

	
start = ProcessWaitForFlag(1)

	

	
std_err = ProcessWaitForFlag(16)

	

	
std_in = ProcessWaitForFlag(4)

	

	
std_out = ProcessWaitForFlag(8)

	

	
terminate = ProcessWaitForFlag(2)

	

	
class virtualbox.library.ProcessWaitResult(value)

	Process waiting results. Depending on the process waiting flags (for
more information see ProcessWaitForFlag) the waiting result
can vary based on the processes’ current status.

To wait for a guest process to terminate after it has been
created by IGuestSession.process_create() or IGuestSession.process_create_ex()
one would specify ProcessWaitFor_Terminate.

If a guest process has been started with ProcessCreateFlag_WaitForStdOut
a client can wait with ProcessWaitResult_StdOut for new data to arrive on
stdout; same applies for ProcessCreateFlag_WaitForStdErr and
ProcessWaitResult_StdErr.

	
none(0)

	No result was returned. Not being used.

	
start(1)

	The process has been started.

	
terminate(2)

	The process has been terminated.

	
status(3)

	The process has changed its status. The status then can
be retrieved via IProcess.status() .

	
error(4)

	Error while executing the process.

	
timeout(5)

	The waiting operation timed out. Also use if the guest process has
timed out in the guest side (kill attempted).

	
std_in(6)

	The process signalled that stdin became available for writing.

	
std_out(7)

	Data on stdout became available for reading.

	
std_err(8)

	Data on stderr became available for reading.

	
wait_flag_not_supported(9)

	A waiting flag specified in the IProcess.wait_for() call
is not supported by the guest.

	
error = ProcessWaitResult(4)

	

	
none = ProcessWaitResult(0)

	

	
start = ProcessWaitResult(1)

	

	
status = ProcessWaitResult(3)

	

	
std_err = ProcessWaitResult(8)

	

	
std_in = ProcessWaitResult(6)

	

	
std_out = ProcessWaitResult(7)

	

	
terminate = ProcessWaitResult(2)

	

	
timeout = ProcessWaitResult(5)

	

	
wait_flag_not_supported = ProcessWaitResult(9)

	

	
class virtualbox.library.FileCopyFlag(value)

	File copying flags.
Not flags are implemented yet.

	
none(0)

	No flag set.

	
no_replace(1)

	Do not replace the destination file if it exists.
This flag is not implemented yet.

	
follow_links(2)

	Follow symbolic links.
This flag is not implemented yet.

	
update(4)

	Only copy when the source file is newer than the destination file
or when the destination file is missing.
This flag is not implemented yet.

	
follow_links = FileCopyFlag(2)

	

	
no_replace = FileCopyFlag(1)

	

	
none = FileCopyFlag(0)

	

	
update = FileCopyFlag(4)

	

	
class virtualbox.library.FsObjMoveFlags(value)

	File moving flags.

	
none(0)

	No flag set.

	
replace(1)

	Replace the destination file, symlink, etc if it exists, however this
does not allow replacing any directories.

	
follow_links(2)

	Follow symbolic links in the final components or not (only applied to
the given source and target paths, not to anything else).

	
allow_directory_moves(4)

	Allow moving directories accross file system boundraries. Because it
is could be a big undertaking, we require extra assurance that we
should do it when requested.

	
allow_directory_moves = FsObjMoveFlags(4)

	

	
follow_links = FsObjMoveFlags(2)

	

	
none = FsObjMoveFlags(0)

	

	
replace = FsObjMoveFlags(1)

	

	
class virtualbox.library.DirectoryCreateFlag(value)

	Directory creation flags.

	
none(0)

	No flag set.

	
parents(1)

	No error if existing, make parent directories as needed.

	
none = DirectoryCreateFlag(0)

	

	
parents = DirectoryCreateFlag(1)

	

	
class virtualbox.library.DirectoryCopyFlags(value)

	Directory copying flags.
Not flags are implemented yet.

	
none(0)

	No flag set.

	
copy_into_existing(1)

	Allow copying into an existing destination directory.

	
copy_into_existing = DirectoryCopyFlags(1)

	

	
none = DirectoryCopyFlags(0)

	

	
class virtualbox.library.DirectoryRemoveRecFlag(value)

	Directory recursive removement flags.

WARNING!! THE FLAGS ARE CURRENTLY IGNORED. THE METHOD APPLIES
DirectoryRemoveRecFlag.content_and_dir REGARDLESS
OF THE INPUT.

	
none(0)

	No flag set.

	
content_and_dir(1)

	Delete the content of the directory and the directory itself.

	
content_only(2)

	Only delete the content of the directory, omit the directory it self.

	
content_and_dir = DirectoryRemoveRecFlag(1)

	

	
content_only = DirectoryRemoveRecFlag(2)

	

	
none = DirectoryRemoveRecFlag(0)

	

	
class virtualbox.library.FsObjRenameFlag(value)

	Flags for use when renaming file system objects (files, directories,
symlink, etc), see IGuestSession.fs_obj_rename() .

	
no_replace(0)

	Do not replace any destination object.

	
replace(1)

	This will attempt to replace any destination object other except
directories. (The default is to fail if the destination exists.)

	
no_replace = FsObjRenameFlag(0)

	

	
replace = FsObjRenameFlag(1)

	

	
class virtualbox.library.ProcessCreateFlag(value)

	Guest process execution flags.
The values are passed to the guest additions, so its not possible
to change (move) or reuse values.here. See EXECUTEPROCESSFLAG_XXX
in GuestControlSvc.h.

	
none(0)

	No flag set.

	
wait_for_process_start_only(1)

	Only use the specified timeout value to wait for starting the guest process - the guest
process itself then uses an infinite timeout.

	
ignore_orphaned_processes(2)

	Do not report an error when executed processes are still alive when VBoxService or the guest OS is shutting down.

	
hidden(4)

	Do not show the started process according to the guest OS guidelines.

	
profile(8)

	Utilize the user’s profile data when exeuting a process. Only available for Windows guests at the moment.

	
wait_for_std_out(16)

	The guest process waits until all data from stdout is read out.

	
wait_for_std_err(32)

	The guest process waits until all data from stderr is read out.

	
expand_arguments(64)

	Expands environment variables in process arguments.

This is not yet implemented and is currently silently ignored.
We will document the protocolVersion number for this feature once it
appears, so don’t use it till then.

	
unquoted_arguments(128)

	Work around for Windows and OS/2 applications not following normal
argument quoting and escaping rules. The arguments are passed to the
application without any extra quoting, just a single space between each.
Present since VirtualBox 4.3.28 and 5.0 beta 3.

	
expand_arguments = ProcessCreateFlag(64)

	

	
hidden = ProcessCreateFlag(4)

	

	
ignore_orphaned_processes = ProcessCreateFlag(2)

	

	
none = ProcessCreateFlag(0)

	

	
profile = ProcessCreateFlag(8)

	

	
unquoted_arguments = ProcessCreateFlag(128)

	

	
wait_for_process_start_only = ProcessCreateFlag(1)

	

	
wait_for_std_err = ProcessCreateFlag(32)

	

	
wait_for_std_out = ProcessCreateFlag(16)

	

	
class virtualbox.library.ProcessPriority(value)

	Process priorities.

	
invalid(0)

	Invalid priority, do not use.

	
default(1)

	Default process priority determined by the OS.

	
default = ProcessPriority(1)

	

	
invalid = ProcessPriority(0)

	

	
class virtualbox.library.SymlinkType(value)

	Symbolic link types. This is significant when creating links on the
Windows platform, ignored elsewhere.

	
unknown(0)

	It is not known what is being targeted.

	
directory(1)

	The link targets a directory.

	
file_p(2)

	The link targets a file (or whatever else except directories).

	
directory = SymlinkType(1)

	

	
file_p = SymlinkType(2)

	

	
unknown = SymlinkType(0)

	

	
class virtualbox.library.SymlinkReadFlag(value)

	Symbolic link reading flags.

	
none(0)

	No flags set.

	
no_symlinks(1)

	Don’t allow symbolic links as part of the path.

	
no_symlinks = SymlinkReadFlag(1)

	

	
none = SymlinkReadFlag(0)

	

	
class virtualbox.library.ProcessStatus(value)

	Process execution statuses.

	
undefined(0)

	Process is in an undefined state.

	
starting(10)

	Process is being started.

	
started(100)

	Process has been started.

	
paused(110)

	Process has been paused.

	
terminating(480)

	Process is being terminated.

	
terminated_normally(500)

	Process terminated normally.

	
terminated_signal(510)

	Process terminated via signal.

	
terminated_abnormally(511)

	Process terminated abnormally.

	
timed_out_killed(512)

	Process timed out and was killed.

	
timed_out_abnormally(513)

	Process timed out and was not killed successfully.

	
down(600)

	Service/OS is stopping, process was killed.

	
error(800)

	Something went wrong.

	
down = ProcessStatus(600)

	

	
error = ProcessStatus(800)

	

	
paused = ProcessStatus(110)

	

	
started = ProcessStatus(100)

	

	
starting = ProcessStatus(10)

	

	
terminated_abnormally = ProcessStatus(511)

	

	
terminated_normally = ProcessStatus(500)

	

	
terminated_signal = ProcessStatus(510)

	

	
terminating = ProcessStatus(480)

	

	
timed_out_abnormally = ProcessStatus(513)

	

	
timed_out_killed = ProcessStatus(512)

	

	
undefined = ProcessStatus(0)

	

	
class virtualbox.library.ProcessInputStatus(value)

	Process input statuses.

	
undefined(0)

	Undefined state.

	
broken(1)

	Input pipe is broken.

	
available(10)

	Input pipe became available for writing.

	
written(50)

	Data has been successfully written.

	
overflow(100)

	Too much input data supplied, data overflow.

	
available = ProcessInputStatus(10)

	

	
broken = ProcessInputStatus(1)

	

	
overflow = ProcessInputStatus(100)

	

	
undefined = ProcessInputStatus(0)

	

	
written = ProcessInputStatus(50)

	

	
class virtualbox.library.PathStyle(value)

	The path style of a system.
(Values matches the RTPATH_STR_F_STYLE_XXX defines in iprt/path.h!)

	
dos(1)

	DOS-style paths with forward and backward slashes, drive
letters and UNC. Known from DOS, OS/2 and Windows.

	
unix(2)

	UNIX-style paths with forward slashes only.

	
unknown(8)

	The path style is not known, most likely because the guest additions
aren’t active yet.

	
dos = PathStyle(1)

	

	
unix = PathStyle(2)

	

	
unknown = PathStyle(8)

	

	
class virtualbox.library.FileAccessMode(value)

	File open access mode for use with IGuestSession.file_open()
and IGuestSession.file_open_ex() .

	
read_only(1)

	Open the file only with read access.

	
write_only(2)

	Open the file only with write access.

	
read_write(3)

	Open the file with both read and write access.

	
append_only(4)

	Open the file for appending only, no read or seek access.
Not yet implemented.

	
append_read(5)

	Open the file for appending and read. Writes always goes to the
end of the file while reads are done at the current or specified file
position.
Not yet implemented.

	
append_only = FileAccessMode(4)

	

	
append_read = FileAccessMode(5)

	

	
read_only = FileAccessMode(1)

	

	
read_write = FileAccessMode(3)

	

	
write_only = FileAccessMode(2)

	

	
class virtualbox.library.FileOpenAction(value)

	What action IGuestSession.file_open() and IGuestSession.file_open_ex()
should take whether the file being opened exists or not.

	
open_existing(1)

	Opens an existing file, fails if no file exists. (Was “oe”.)

	
open_or_create(2)

	Opens an existing file, creates a new one if no file exists. (Was “oc”.)

	
create_new(3)

	Creates a new file is no file exists, fails if there is a file there already. (Was “ce”.)

	
create_or_replace(4)

	Creates a new file, replace any existing file. (Was “ca”.)

Currently undefined whether we will inherit mode and ACLs from the
existing file or replace them.

	
open_existing_truncated(5)

	Opens and truncate an existing file, fails if no file exists. (Was “ot”.)

	
append_or_create(99)

	Opens an existing file and places the file pointer at the end of
the file, creates the file if it does not exist. This action implies
write access. (Was “oa”.)

<!– @todo r=bird: See iprt/file.h, RTFILE_O_APPEND - not an action/disposition!
Moving the file pointer to the end, is almost fine, but implying ‘write’ access
isn’t. That is something that is exclusively reserved for the opening mode. –>
Deprecated. Only here for historical reasons. Do not use!

	
append_or_create = FileOpenAction(99)

	

	
create_new = FileOpenAction(3)

	

	
create_or_replace = FileOpenAction(4)

	

	
open_existing = FileOpenAction(1)

	

	
open_existing_truncated = FileOpenAction(5)

	

	
open_or_create = FileOpenAction(2)

	

	
class virtualbox.library.FileSharingMode(value)

	File sharing mode for IGuestSession.file_open_ex() .

	
read(1)

	Only share read access to the file.

	
write(2)

	Only share write access to the file.

	
read_write(3)

	Share both read and write access to the file, but deny deletion.

	
delete(4)

	Only share delete access, denying read and write.

	
read_delete(5)

	Share read and delete access to the file, denying writing.

	
write_delete(6)

	Share write and delete access to the file, denying reading.

	
all_p(7)

	Share all access, i.e. read, write and delete, to the file.

	
all_p = FileSharingMode(7)

	

	
delete = FileSharingMode(4)

	

	
read = FileSharingMode(1)

	

	
read_delete = FileSharingMode(5)

	

	
read_write = FileSharingMode(3)

	

	
write = FileSharingMode(2)

	

	
write_delete = FileSharingMode(6)

	

	
class virtualbox.library.FileOpenExFlags(value)

	Open flags for IGuestSession.file_open_ex() .

	
none(0)

	No flag set.

	
none = FileOpenExFlags(0)

	

	
class virtualbox.library.FileStatus(value)

	File statuses.

	
undefined(0)

	File is in an undefined state.

	
opening(10)

	Guest file is opening.

	
open_p(100)

	Guest file has been successfully opened.

	
closing(150)

	Guest file closing.

	
closed(200)

	Guest file has been closed.

	
down(600)

	Service/OS is stopping, guest file was closed.

	
error(800)

	Something went wrong.

	
closed = FileStatus(200)

	

	
closing = FileStatus(150)

	

	
down = FileStatus(600)

	

	
error = FileStatus(800)

	

	
open_p = FileStatus(100)

	

	
opening = FileStatus(10)

	

	
undefined = FileStatus(0)

	

	
class virtualbox.library.FsObjType(value)

	File system object (file) types.

	
unknown(1)

	Used either if the object has type that is not in this enum, or
if the type has not yet been determined or set.

	
fifo(2)

	FIFO or named pipe, depending on the platform/terminology.

	
dev_char(3)

	Character device.

	
directory(4)

	Directory.

	
dev_block(5)

	Block device.

	
file_p(6)

	Regular file.

	
symlink(7)

	Symbolic link.

	
socket(8)

	Socket.

	
white_out(9)

	A white-out file. Found in union mounts where it is used for
hiding files after deletion, I think.

	
dev_block = FsObjType(5)

	

	
dev_char = FsObjType(3)

	

	
directory = FsObjType(4)

	

	
fifo = FsObjType(2)

	

	
file_p = FsObjType(6)

	

	
socket = FsObjType(8)

	

	
symlink = FsObjType(7)

	

	
unknown = FsObjType(1)

	

	
white_out = FsObjType(9)

	

	
class virtualbox.library.DnDAction(value)

	Possible actions of a drag’n drop operation.

	
ignore(0)

	Do nothing.

	
copy(1)

	Copy the item to the target.

	
move(2)

	Move the item to the target.

	
link(3)

	Link the item from within the target.

	
copy = DnDAction(1)

	

	
ignore = DnDAction(0)

	

	
link = DnDAction(3)

	

	
move = DnDAction(2)

	

	
class virtualbox.library.DirectoryOpenFlag(value)

	Directory open flags.

	
none(0)

	No flag set.

	
no_symlinks(1)

	Don’t allow symbolic links as part of the path.

	
no_symlinks = DirectoryOpenFlag(1)

	

	
none = DirectoryOpenFlag(0)

	

	
class virtualbox.library.MediumState(value)

	Virtual medium state.
IMedium

	
not_created(0)

	Associated medium storage does not exist (either was not created yet or
was deleted).

	
created(1)

	Associated storage exists and accessible; this gets set if the
accessibility check performed by IMedium.refresh_state()
was successful.

	
locked_read(2)

	Medium is locked for reading (see IMedium.lock_read()),
no data modification is possible.

	
locked_write(3)

	Medium is locked for writing (see IMedium.lock_write()),
no concurrent data reading or modification is possible.

	
inaccessible(4)

	Medium accessibility check (see IMedium.refresh_state()) has
not yet been performed, or else, associated medium storage is not
accessible. In the first case, IMedium.last_access_error()
is empty, in the second case, it describes the error that occurred.

	
creating(5)

	Associated medium storage is being created.

	
deleting(6)

	Associated medium storage is being deleted.

	
created = MediumState(1)

	

	
creating = MediumState(5)

	

	
deleting = MediumState(6)

	

	
inaccessible = MediumState(4)

	

	
locked_read = MediumState(2)

	

	
locked_write = MediumState(3)

	

	
not_created = MediumState(0)

	

	
class virtualbox.library.MediumType(value)

	Virtual medium type. For each IMedium , this defines how the medium is
attached to a virtual machine (see IMediumAttachment) and what happens
when a snapshot (see ISnapshot) is taken of a virtual machine which has
the medium attached. At the moment DVD and floppy media are always of type “writethrough”.

	
normal(0)

	Normal medium (attached directly or indirectly, preserved
when taking snapshots).

	
immutable(1)

	Immutable medium (attached indirectly, changes are wiped out
the next time the virtual machine is started).

	
writethrough(2)

	Write through medium (attached directly, ignored when
taking snapshots).

	
shareable(3)

	Allow using this medium concurrently by several machines.
Present since VirtualBox 3.2.0, and accepted since 3.2.8.

	
readonly(4)

	A readonly medium, which can of course be used by several machines.
Present and accepted since VirtualBox 4.0.

	
multi_attach(5)

	A medium which is indirectly attached, so that one base medium can
be used for several VMs which have their own differencing medium to
store their modifications. In some sense a variant of Immutable
with unset AutoReset flag in each differencing medium.
Present and accepted since VirtualBox 4.0.

	
immutable = MediumType(1)

	

	
multi_attach = MediumType(5)

	

	
normal = MediumType(0)

	

	
readonly = MediumType(4)

	

	
shareable = MediumType(3)

	

	
writethrough = MediumType(2)

	

	
class virtualbox.library.MediumVariant(value)

	Virtual medium image variant. More than one flag may be set.
IMedium

	
standard(0)

	No particular variant requested, results in using the backend default.

	
vmdk_split2_g(1)

	VMDK image split in chunks of less than 2GByte.

	
vmdk_raw_disk(2)

	VMDK image representing a raw disk.

	
vmdk_stream_optimized(4)

	VMDK streamOptimized image. Special import/export format which is
read-only/append-only.

	
vmdk_esx(8)

	VMDK format variant used on ESX products.

	
vdi_zero_expand(256)

	Fill new blocks with zeroes while expanding image file.

	
fixed(65536)

	Fixed image. Only allowed for base images.

	
diff(131072)

	Differencing image. Only allowed for child images.

	
no_create_dir(1073741824)

	Special flag which suppresses automatic creation of the subdirectory.
Only used when passing the medium variant as an input parameter.

	
diff = MediumVariant(131072)

	

	
fixed = MediumVariant(65536)

	

	
no_create_dir = MediumVariant(1073741824)

	

	
standard = MediumVariant(0)

	

	
vdi_zero_expand = MediumVariant(256)

	

	
vmdk_esx = MediumVariant(8)

	

	
vmdk_raw_disk = MediumVariant(2)

	

	
vmdk_split2_g = MediumVariant(1)

	

	
vmdk_stream_optimized = MediumVariant(4)

	

	
class virtualbox.library.DataType(value)

	
	
int32(0)

	

	
int8(1)

	

	
string(2)

	

	
class virtualbox.library.DataFlags(value)

	
	
none(0)

	

	
mandatory(1)

	

	
expert(2)

	

	
array(4)

	

	
flag_mask(7)

	

	
class virtualbox.library.MediumFormatCapabilities(value)

	Medium format capability flags.

	
uuid(1)

	Supports UUIDs as expected by VirtualBox code.

	
create_fixed(2)

	Supports creating fixed size images, allocating all space instantly.

	
create_dynamic(4)

	Supports creating dynamically growing images, allocating space on
demand.

	
create_split2_g(8)

	Supports creating images split in chunks of a bit less than 2 GBytes.

	
differencing(16)

	Supports being used as a format for differencing media (see IMedium.create_diff_storage()).

	
asynchronous(32)

	Supports asynchronous I/O operations for at least some configurations.

	
file_p(64)

	The format backend operates on files (the IMedium.location()
attribute of the medium specifies a file used to store medium
data; for a list of supported file extensions see
IMediumFormat.describe_file_extensions()).

	
properties(128)

	The format backend uses the property interface to configure the storage
location and properties (the IMediumFormat.describe_properties()
method is used to get access to properties supported by the given medium format).

	
tcp_networking(256)

	The format backend uses the TCP networking interface for network access.

	
vfs(512)

	The format backend supports virtual filesystem functionality.

	
discard(1024)

	The format backend supports discarding blocks.

	
preferred(2048)

	Indicates that this is a frequently used format backend.

	
capability_mask(4095)

	

	
asynchronous = MediumFormatCapabilities(32)

	

	
create_dynamic = MediumFormatCapabilities(4)

	

	
create_fixed = MediumFormatCapabilities(2)

	

	
create_split2_g = MediumFormatCapabilities(8)

	

	
differencing = MediumFormatCapabilities(16)

	

	
discard = MediumFormatCapabilities(1024)

	

	
file_p = MediumFormatCapabilities(64)

	

	
preferred = MediumFormatCapabilities(2048)

	

	
properties = MediumFormatCapabilities(128)

	

	
tcp_networking = MediumFormatCapabilities(256)

	

	
uuid = MediumFormatCapabilities(1)

	

	
vfs = MediumFormatCapabilities(512)

	

	
class virtualbox.library.KeyboardLED(value)

	Keyboard LED indicators.

	
num_lock(1)

	

	
caps_lock(2)

	

	
scroll_lock(4)

	

	
class virtualbox.library.MouseButtonState(value)

	Mouse button state.

	
left_button(1)

	

	
right_button(2)

	

	
middle_button(4)

	

	
wheel_up(8)

	

	
wheel_down(16)

	

	
x_button1(32)

	

	
x_button2(64)

	

	
mouse_state_mask(127)

	

	
class virtualbox.library.TouchContactState(value)

	Touch event contact state.

	
none(0)

	The touch has finished.

	
in_contact(1)

	Whether the touch is really touching the device.

	
in_range(2)

	Whether the touch is close enough to the device to be detected.

	
contact_state_mask(3)

	

	
in_contact = TouchContactState(1)

	

	
in_range = TouchContactState(2)

	

	
none = TouchContactState(0)

	

	
class virtualbox.library.FramebufferCapabilities(value)

	Framebuffer capability flags.

	
update_image(1)

	Requires NotifyUpdateImage. NotifyUpdate must not be called.

	
vhwa(2)

	Supports VHWA interface. If set, then IFramebuffer::processVHWACommand can be called.

	
visible_region(4)

	Supports visible region. If set, then IFramebuffer::setVisibleRegion can be called.

	
update_image = FramebufferCapabilities(1)

	

	
vhwa = FramebufferCapabilities(2)

	

	
visible_region = FramebufferCapabilities(4)

	

	
class virtualbox.library.GuestMonitorStatus(value)

	The current status of the guest display.

	
disabled(0)

	The guest monitor is disabled in the guest.

	
enabled(1)

	The guest monitor is enabled in the guest.

	
blank(2)

	The guest monitor is enabled in the guest but should display nothing.

	
blank = GuestMonitorStatus(2)

	

	
disabled = GuestMonitorStatus(0)

	

	
enabled = GuestMonitorStatus(1)

	

	
class virtualbox.library.ScreenLayoutMode(value)

	How IDisplay::setScreenLayout method should work.

	
apply_p(0)

	If the guest is already at desired mode then the API might avoid setting the mode.

	
reset(1)

	Always set the new mode even if the guest is already at desired mode.

	
apply_p = ScreenLayoutMode(0)

	

	
reset = ScreenLayoutMode(1)

	

	
class virtualbox.library.NetworkAttachmentType(value)

	Network attachment type.

	
null(0)

	Null value, also means “not attached”.

	
nat(1)

	

	
bridged(2)

	

	
internal(3)

	

	
host_only(4)

	

	
generic(5)

	

	
nat_network(6)

	

	
null = NetworkAttachmentType(0)

	

	
class virtualbox.library.NetworkAdapterType(value)

	Network adapter type.

	
null(0)

	Null value (never used by the API).

	
am79_c970_a(1)

	AMD PCNet-PCI II network card (Am79C970A).

	
am79_c973(2)

	AMD PCNet-FAST III network card (Am79C973).

	
i82540_em(3)

	Intel PRO/1000 MT Desktop network card (82540EM).

	
i82543_gc(4)

	Intel PRO/1000 T Server network card (82543GC).

	
i82545_em(5)

	Intel PRO/1000 MT Server network card (82545EM).

	
virtio(6)

	Virtio network device.

	
am79_c970_a = NetworkAdapterType(1)

	

	
am79_c973 = NetworkAdapterType(2)

	

	
i82540_em = NetworkAdapterType(3)

	

	
i82543_gc = NetworkAdapterType(4)

	

	
i82545_em = NetworkAdapterType(5)

	

	
null = NetworkAdapterType(0)

	

	
virtio = NetworkAdapterType(6)

	

	
class virtualbox.library.NetworkAdapterPromiscModePolicy(value)

	The promiscuous mode policy of an interface.

	
deny(1)

	Deny promiscuous mode requests.

	
allow_network(2)

	Allow promiscuous mode, but restrict the scope it to the internal
network so that it only applies to other VMs.

	
allow_all(3)

	Allow promiscuous mode, include unrelated traffic going over the wire
and internally on the host.

	
allow_all = NetworkAdapterPromiscModePolicy(3)

	

	
allow_network = NetworkAdapterPromiscModePolicy(2)

	

	
deny = NetworkAdapterPromiscModePolicy(1)

	

	
class virtualbox.library.PortMode(value)

	The PortMode enumeration represents possible communication modes for
the virtual serial port device.

	
disconnected(0)

	Virtual device is not attached to any real host device.

	
host_pipe(1)

	Virtual device is attached to a host pipe.

	
host_device(2)

	Virtual device is attached to a host device.

	
raw_file(3)

	Virtual device is attached to a raw file.

	
tcp(4)

	Virtual device is attached to a TCP socket.

	
disconnected = PortMode(0)

	

	
host_device = PortMode(2)

	

	
host_pipe = PortMode(1)

	

	
raw_file = PortMode(3)

	

	
tcp = PortMode(4)

	

	
class virtualbox.library.USBControllerType(value)

	The USB controller type. IUSBController.type_p() .

	
null(0)

	@c null value. Never used by the API.

	
ohci(1)

	

	
ehci(2)

	

	
xhci(3)

	

	
last(4)

	Last element (invalid). Used for parameter checks.

	
last = USBControllerType(4)

	

	
null = USBControllerType(0)

	

	
class virtualbox.library.USBConnectionSpeed(value)

	USB device/port speed state. This enumeration represents speeds at
which a USB device can communicate with the host.

The speed is a function of both the device itself and the port which
it is attached to, including hubs and cables in the path.

Due to differences in USB stack implementations on various hosts,
the reported speed may not exactly match the actual speed.

IHostUSBDevice

	
null(0)

	@c null value. Never returned by the API.

	
low(1)

	Low speed, 1.5 Mbps.

	
full(2)

	Full speed, 12 Mbps.

	
high(3)

	High speed, 480 Mbps.

	
super_p(4)

	SuperSpeed, 5 Gbps.

	
super_plus(5)

	SuperSpeedPlus, 10 Gbps.

	
full = USBConnectionSpeed(2)

	

	
high = USBConnectionSpeed(3)

	

	
low = USBConnectionSpeed(1)

	

	
null = USBConnectionSpeed(0)

	

	
super_p = USBConnectionSpeed(4)

	

	
super_plus = USBConnectionSpeed(5)

	

	
class virtualbox.library.USBDeviceState(value)

	USB device state. This enumeration represents all possible states
of the USB device physically attached to the host computer regarding
its state on the host computer and availability to guest computers
(all currently running virtual machines).

Once a supported USB device is attached to the host, global USB
filters (IHost.usb_device_filters()) are activated. They can
either ignore the device, or put it to USBDeviceState_Held state, or do
nothing. Unless the device is ignored by global filters, filters of all
currently running guests (IUSBDeviceFilters.device_filters()) are
activated that can put it to USBDeviceState_Captured state.

If the device was ignored by global filters, or didn’t match
any filters at all (including guest ones), it is handled by the host
in a normal way. In this case, the device state is determined by
the host and can be one of USBDeviceState_Unavailable, USBDeviceState_Busy
or USBDeviceState_Available, depending on the current device usage.

Besides auto-capturing based on filters, the device can be manually
captured by guests (IConsole.attach_usb_device()) if its
state is USBDeviceState_Busy, USBDeviceState_Available or
USBDeviceState_Held.

Due to differences in USB stack implementations in Linux and Win32,
states USBDeviceState_Busy and USBDeviceState_Unavailable are applicable
only to the Linux version of the product. This also means that (IConsole.attach_usb_device()) can only succeed on Win32 if the
device state is USBDeviceState_Held.

IHostUSBDevice , IHostUSBDeviceFilter

	
not_supported(0)

	Not supported by the VirtualBox server, not available to guests.

	
unavailable(1)

	Being used by the host computer exclusively,
not available to guests.

	
busy(2)

	Being used by the host computer, potentially available to guests.

	
available(3)

	Not used by the host computer, available to guests (the host computer
can also start using the device at any time).

	
held(4)

	Held by the VirtualBox server (ignored by the host computer),
available to guests.

	
captured(5)

	Captured by one of the guest computers, not available
to anybody else.

	
available = USBDeviceState(3)

	

	
busy = USBDeviceState(2)

	

	
captured = USBDeviceState(5)

	

	
held = USBDeviceState(4)

	

	
not_supported = USBDeviceState(0)

	

	
unavailable = USBDeviceState(1)

	

	
class virtualbox.library.USBDeviceFilterAction(value)

	Actions for host USB device filters.
IHostUSBDeviceFilter , USBDeviceState

	
null(0)

	Null value (never used by the API).

	
ignore(1)

	Ignore the matched USB device.

	
hold(2)

	Hold the matched USB device.

	
hold = USBDeviceFilterAction(2)

	

	
ignore = USBDeviceFilterAction(1)

	

	
null = USBDeviceFilterAction(0)

	

	
class virtualbox.library.AudioDriverType(value)

	Host audio driver type.

	
null(0)

	Null value, also means “dummy audio driver”.

	
win_mm(1)

	Windows multimedia (Windows hosts only, not supported at the moment).

	
oss(2)

	Open Sound System (Linux / Unix hosts only).

	
alsa(3)

	Advanced Linux Sound Architecture (Linux hosts only).

	
direct_sound(4)

	DirectSound (Windows hosts only).

	
core_audio(5)

	CoreAudio (Mac hosts only).

	
mmpm(6)

	Reserved for historical reasons.

	
pulse(7)

	PulseAudio (Linux hosts only).

	
sol_audio(8)

	Solaris audio (Solaris hosts only, not supported at the moment).

	
alsa = AudioDriverType(3)

	

	
core_audio = AudioDriverType(5)

	

	
direct_sound = AudioDriverType(4)

	

	
mmpm = AudioDriverType(6)

	

	
null = AudioDriverType(0)

	

	
oss = AudioDriverType(2)

	

	
pulse = AudioDriverType(7)

	

	
sol_audio = AudioDriverType(8)

	

	
win_mm = AudioDriverType(1)

	

	
class virtualbox.library.AudioControllerType(value)

	Virtual audio controller type.

	
ac97(0)

	

	
sb16(1)

	

	
hda(2)

	

	
class virtualbox.library.AudioCodecType(value)

	The exact variant of audio codec hardware presented
to the guest; see IAudioAdapter.audio_codec() .

	
null(0)

	@c null value. Never used by the API.

	
sb16(1)

	SB16; this is the only option for the SB16 device.

	
stac9700(2)

	A STAC9700 AC‘97 codec.

	
ad1980(3)

	An AD1980 AC‘97 codec. Recommended for Linux guests.

	
stac9221(4)

	A STAC9221 HDA codec.

	
ad1980 = AudioCodecType(3)

	

	
null = AudioCodecType(0)

	

	
sb16 = AudioCodecType(1)

	

	
stac9221 = AudioCodecType(4)

	

	
stac9700 = AudioCodecType(2)

	

	
class virtualbox.library.AuthType(value)

	VirtualBox authentication type.

	
null(0)

	Null value, also means “no authentication”.

	
external(1)

	

	
guest(2)

	

	
null = AuthType(0)

	

	
class virtualbox.library.Reason(value)

	Internal event reason type.

	
unspecified(0)

	Null value, means “no known reason”.

	
host_suspend(1)

	Host is being suspended (power management event).

	
host_resume(2)

	Host is being resumed (power management event).

	
host_battery_low(3)

	Host is running low on battery (power management event).

	
snapshot(4)

	A snapshot of the VM is being taken.

	
host_battery_low = Reason(3)

	

	
host_resume = Reason(2)

	

	
host_suspend = Reason(1)

	

	
snapshot = Reason(4)

	

	
unspecified = Reason(0)

	

	
class virtualbox.library.StorageBus(value)

	The bus type of the storage controller (IDE, SATA, SCSI, SAS or Floppy);
see IStorageController.bus() .

	
null(0)

	@c null value. Never used by the API.

	
ide(1)

	

	
sata(2)

	

	
scsi(3)

	

	
floppy(4)

	

	
sas(5)

	

	
usb(6)

	

	
pc_ie(7)

	

	
null = StorageBus(0)

	

	
class virtualbox.library.StorageControllerType(value)

	The exact variant of storage controller hardware presented
to the guest; see IStorageController.controller_type() .

	
null(0)

	@c null value. Never used by the API.

	
lsi_logic(1)

	A SCSI controller of the LsiLogic variant.

	
bus_logic(2)

	A SCSI controller of the BusLogic variant.

	
intel_ahci(3)

	An Intel AHCI SATA controller; this is the only variant for SATA.

	
piix3(4)

	An IDE controller of the PIIX3 variant.

	
piix4(5)

	An IDE controller of the PIIX4 variant.

	
ich6(6)

	An IDE controller of the ICH6 variant.

	
i82078(7)

	A floppy disk controller; this is the only variant for floppy drives.

	
lsi_logic_sas(8)

	A variant of the LsiLogic controller using SAS.

	
usb(9)

	Special USB based storage controller.

	
nv_me(10)

	An NVMe storage controller.

	
bus_logic = StorageControllerType(2)

	

	
i82078 = StorageControllerType(7)

	

	
ich6 = StorageControllerType(6)

	

	
intel_ahci = StorageControllerType(3)

	

	
lsi_logic = StorageControllerType(1)

	

	
lsi_logic_sas = StorageControllerType(8)

	

	
null = StorageControllerType(0)

	

	
nv_me = StorageControllerType(10)

	

	
piix3 = StorageControllerType(4)

	

	
piix4 = StorageControllerType(5)

	

	
usb = StorageControllerType(9)

	

	
class virtualbox.library.ChipsetType(value)

	Type of emulated chipset (mostly southbridge).

	
null(0)

	@c null value. Never used by the API.

	
piix3(1)

	A PIIX3 (PCI IDE ISA Xcelerator) chipset.

	
ich9(2)

	A ICH9 (I/O Controller Hub) chipset.

	
ich9 = ChipsetType(2)

	

	
null = ChipsetType(0)

	

	
piix3 = ChipsetType(1)

	

	
class virtualbox.library.NATAliasMode(value)

	
	
alias_log(1)

	

	
alias_proxy_only(2)

	

	
alias_use_same_ports(4)

	

	
class virtualbox.library.NATProtocol(value)

	Protocol definitions used with NAT port-forwarding rules.

	
udp(0)

	Port-forwarding uses UDP protocol.

	
tcp(1)

	Port-forwarding uses TCP protocol.

	
tcp = NATProtocol(1)

	

	
udp = NATProtocol(0)

	

	
class virtualbox.library.BandwidthGroupType(value)

	Type of a bandwidth control group.

	
null(0)

	Null type, must be first.

	
disk(1)

	The bandwidth group controls disk I/O.

	
network(2)

	The bandwidth group controls network I/O.

	
disk = BandwidthGroupType(1)

	

	
network = BandwidthGroupType(2)

	

	
null = BandwidthGroupType(0)

	

	
class virtualbox.library.VBoxEventType(value)

	Type of an event.
See IEvent for an introduction to VirtualBox event handling.

	
invalid(0)

	Invalid event, must be first.

	
any_p(1)

	Wildcard for all events.
Events of this type are never delivered, and only used in
IEventSource.register_listener() call to simplify registration.

	
vetoable(2)

	Wildcard for all vetoable events. Events of this type are never delivered, and only
used in IEventSource.register_listener() call to simplify registration.

	
machine_event(3)

	Wildcard for all machine events. Events of this type are never delivered, and only used in
IEventSource.register_listener() call to simplify registration.

	
snapshot_event(4)

	Wildcard for all snapshot events. Events of this type are never delivered, and only used in
IEventSource.register_listener() call to simplify registration.

	
input_event(5)

	Wildcard for all input device (keyboard, mouse) events.
Events of this type are never delivered, and only used in
IEventSource.register_listener() call to simplify registration.

	
last_wildcard(31)

	Last wildcard.

	
on_machine_state_changed(32)

	See IMachineStateChangedEvent IMachineStateChangedEvent.

	
on_machine_data_changed(33)

	See IMachineDataChangedEvent IMachineDataChangedEvent.

	
on_extra_data_changed(34)

	See IExtraDataChangedEvent IExtraDataChangedEvent.

	
on_extra_data_can_change(35)

	See IExtraDataCanChangeEvent IExtraDataCanChangeEvent.

	
on_medium_registered(36)

	See IMediumRegisteredEvent IMediumRegisteredEvent.

	
on_machine_registered(37)

	See IMachineRegisteredEvent IMachineRegisteredEvent.

	
on_session_state_changed(38)

	See ISessionStateChangedEvent ISessionStateChangedEvent.

	
on_snapshot_taken(39)

	See ISnapshotTakenEvent ISnapshotTakenEvent.

	
on_snapshot_deleted(40)

	See ISnapshotDeletedEvent ISnapshotDeletedEvent.

	
on_snapshot_changed(41)

	See ISnapshotChangedEvent ISnapshotChangedEvent.

	
on_guest_property_changed(42)

	See IGuestPropertyChangedEvent IGuestPropertyChangedEvent.

	
on_mouse_pointer_shape_changed(43)

	See IMousePointerShapeChangedEvent IMousePointerShapeChangedEvent.

	
on_mouse_capability_changed(44)

	See IMouseCapabilityChangedEvent IMouseCapabilityChangedEvent.

	
on_keyboard_leds_changed(45)

	See IKeyboardLedsChangedEvent IKeyboardLedsChangedEvent.

	
on_state_changed(46)

	See IStateChangedEvent IStateChangedEvent.

	
on_additions_state_changed(47)

	See IAdditionsStateChangedEvent IAdditionsStateChangedEvent.

	
on_network_adapter_changed(48)

	See INetworkAdapterChangedEvent INetworkAdapterChangedEvent.

	
on_serial_port_changed(49)

	See ISerialPortChangedEvent ISerialPortChangedEvent.

	
on_parallel_port_changed(50)

	See IParallelPortChangedEvent IParallelPortChangedEvent.

	
on_storage_controller_changed(51)

	See IStorageControllerChangedEvent IStorageControllerChangedEvent.

	
on_medium_changed(52)

	See IMediumChangedEvent IMediumChangedEvent.

	
on_vrde_server_changed(53)

	See IVRDEServerChangedEvent IVRDEServerChangedEvent.

	
on_usb_controller_changed(54)

	See IUSBControllerChangedEvent IUSBControllerChangedEvent.

	
on_usb_device_state_changed(55)

	See IUSBDeviceStateChangedEvent IUSBDeviceStateChangedEvent.

	
on_shared_folder_changed(56)

	See ISharedFolderChangedEvent ISharedFolderChangedEvent.

	
on_runtime_error(57)

	See IRuntimeErrorEvent IRuntimeErrorEvent.

	
on_can_show_window(58)

	See ICanShowWindowEvent ICanShowWindowEvent.

	
on_show_window(59)

	See IShowWindowEvent IShowWindowEvent.

	
on_cpu_changed(60)

	See ICPUChangedEvent ICPUChangedEvent.

	
on_vrde_server_info_changed(61)

	See IVRDEServerInfoChangedEvent IVRDEServerInfoChangedEvent.

	
on_event_source_changed(62)

	See IEventSourceChangedEvent IEventSourceChangedEvent.

	
on_cpu_execution_cap_changed(63)

	See ICPUExecutionCapChangedEvent ICPUExecutionCapChangedEvent.

	
on_guest_keyboard(64)

	See IGuestKeyboardEvent IGuestKeyboardEvent.

	
on_guest_mouse(65)

	See IGuestMouseEvent IGuestMouseEvent.

	
on_nat_redirect(66)

	See INATRedirectEvent INATRedirectEvent.

	
on_host_pci_device_plug(67)

	See IHostPCIDevicePlugEvent IHostPCIDevicePlugEvent.

	
on_v_box_svc_availability_changed(68)

	See IVBoxSVCAvailabilityChangedEvent IVBoxSVCAvailablityChangedEvent.

	
on_bandwidth_group_changed(69)

	See IBandwidthGroupChangedEvent IBandwidthGroupChangedEvent.

	
on_guest_monitor_changed(70)

	See IGuestMonitorChangedEvent IGuestMonitorChangedEvent.

	
on_storage_device_changed(71)

	See IStorageDeviceChangedEvent IStorageDeviceChangedEvent.

	
on_clipboard_mode_changed(72)

	See IClipboardModeChangedEvent IClipboardModeChangedEvent.

	
on_dn_d_mode_changed(73)

	See IDnDModeChangedEvent IDnDModeChangedEvent.

	
on_nat_network_changed(74)

	See INATNetworkChangedEvent INATNetworkChangedEvent.

	
on_nat_network_start_stop(75)

	See INATNetworkStartStopEvent INATNetworkStartStopEvent.

	
on_nat_network_alter(76)

	See INATNetworkAlterEvent INATNetworkAlterEvent.

	
on_nat_network_creation_deletion(77)

	See INATNetworkCreationDeletionEvent INATNetworkCreationDeletionEvent.

	
on_nat_network_setting(78)

	See INATNetworkSettingEvent INATNetworkSettingEvent.

	
on_nat_network_port_forward(79)

	See INATNetworkPortForwardEvent INATNetworkPortForwardEvent.

	
on_guest_session_state_changed(80)

	See IGuestSessionStateChangedEvent IGuestSessionStateChangedEvent.

	
on_guest_session_registered(81)

	See IGuestSessionRegisteredEvent IGuestSessionRegisteredEvent.

	
on_guest_process_registered(82)

	See IGuestProcessRegisteredEvent IGuestProcessRegisteredEvent.

	
on_guest_process_state_changed(83)

	See IGuestProcessStateChangedEvent IGuestProcessStateChangedEvent.

	
on_guest_process_input_notify(84)

	See IGuestProcessInputNotifyEvent IGuestProcessInputNotifyEvent.

	
on_guest_process_output(85)

	See IGuestProcessOutputEvent IGuestProcessOutputEvent.

	
on_guest_file_registered(86)

	See IGuestFileRegisteredEvent IGuestFileRegisteredEvent.

	
on_guest_file_state_changed(87)

	See IGuestFileStateChangedEvent IGuestFileStateChangedEvent.

	
on_guest_file_offset_changed(88)

	See IGuestFileOffsetChangedEvent IGuestFileOffsetChangedEvent.

	
on_guest_file_read(89)

	See IGuestFileReadEvent IGuestFileReadEvent.

For performance reasons this is a separate event to
not unnecessarily overflow the event queue.

	
on_guest_file_write(90)

	See IGuestFileWriteEvent IGuestFileWriteEvent.

For performance reasons this is a separate event to
not unnecessarily overflow the event queue.

	
on_video_capture_changed(91)

	See IVideoCaptureChangedEvent IVideoCapturedChangeEvent.

	
on_guest_user_state_changed(92)

	See IGuestUserStateChangedEvent IGuestUserStateChangedEvent.

	
on_guest_multi_touch(93)

	See IGuestMouseEvent IGuestMouseEvent.

	
on_host_name_resolution_configuration_change(94)

	See IHostNameResolutionConfigurationChangeEvent IHostNameResolutionConfigurationChangeEvent.

	
on_snapshot_restored(95)

	See ISnapshotRestoredEvent ISnapshotRestoredEvent.

	
on_medium_config_changed(96)

	See IMediumConfigChangedEvent IMediumConfigChangedEvent.

	
last(97)

	Must be last event, used for iterations and structures relying on numerical event values.

	
any_p = VBoxEventType(1)

	

	
input_event = VBoxEventType(5)

	

	
invalid = VBoxEventType(0)

	

	
last = VBoxEventType(97)

	

	
last_wildcard = VBoxEventType(31)

	

	
machine_event = VBoxEventType(3)

	

	
on_additions_state_changed = VBoxEventType(47)

	

	
on_bandwidth_group_changed = VBoxEventType(69)

	

	
on_can_show_window = VBoxEventType(58)

	

	
on_clipboard_mode_changed = VBoxEventType(72)

	

	
on_cpu_changed = VBoxEventType(60)

	

	
on_cpu_execution_cap_changed = VBoxEventType(63)

	

	
on_dn_d_mode_changed = VBoxEventType(73)

	

	
on_event_source_changed = VBoxEventType(62)

	

	
on_extra_data_can_change = VBoxEventType(35)

	

	
on_extra_data_changed = VBoxEventType(34)

	

	
on_guest_file_offset_changed = VBoxEventType(88)

	

	
on_guest_file_read = VBoxEventType(89)

	

	
on_guest_file_registered = VBoxEventType(86)

	

	
on_guest_file_state_changed = VBoxEventType(87)

	

	
on_guest_file_write = VBoxEventType(90)

	

	
on_guest_keyboard = VBoxEventType(64)

	

	
on_guest_monitor_changed = VBoxEventType(70)

	

	
on_guest_mouse = VBoxEventType(65)

	

	
on_guest_multi_touch = VBoxEventType(93)

	

	
on_guest_process_input_notify = VBoxEventType(84)

	

	
on_guest_process_output = VBoxEventType(85)

	

	
on_guest_process_registered = VBoxEventType(82)

	

	
on_guest_process_state_changed = VBoxEventType(83)

	

	
on_guest_property_changed = VBoxEventType(42)

	

	
on_guest_session_registered = VBoxEventType(81)

	

	
on_guest_session_state_changed = VBoxEventType(80)

	

	
on_guest_user_state_changed = VBoxEventType(92)

	

	
on_host_name_resolution_configuration_change = VBoxEventType(94)

	

	
on_host_pci_device_plug = VBoxEventType(67)

	

	
on_keyboard_leds_changed = VBoxEventType(45)

	

	
on_machine_data_changed = VBoxEventType(33)

	

	
on_machine_registered = VBoxEventType(37)

	

	
on_machine_state_changed = VBoxEventType(32)

	

	
on_medium_changed = VBoxEventType(52)

	

	
on_medium_config_changed = VBoxEventType(96)

	

	
on_medium_registered = VBoxEventType(36)

	

	
on_mouse_capability_changed = VBoxEventType(44)

	

	
on_mouse_pointer_shape_changed = VBoxEventType(43)

	

	
on_nat_network_alter = VBoxEventType(76)

	

	
on_nat_network_changed = VBoxEventType(74)

	

	
on_nat_network_creation_deletion = VBoxEventType(77)

	

	
on_nat_network_port_forward = VBoxEventType(79)

	

	
on_nat_network_setting = VBoxEventType(78)

	

	
on_nat_network_start_stop = VBoxEventType(75)

	

	
on_nat_redirect = VBoxEventType(66)

	

	
on_network_adapter_changed = VBoxEventType(48)

	

	
on_parallel_port_changed = VBoxEventType(50)

	

	
on_runtime_error = VBoxEventType(57)

	

	
on_serial_port_changed = VBoxEventType(49)

	

	
on_session_state_changed = VBoxEventType(38)

	

	
on_shared_folder_changed = VBoxEventType(56)

	

	
on_show_window = VBoxEventType(59)

	

	
on_snapshot_changed = VBoxEventType(41)

	

	
on_snapshot_deleted = VBoxEventType(40)

	

	
on_snapshot_restored = VBoxEventType(95)

	

	
on_snapshot_taken = VBoxEventType(39)

	

	
on_state_changed = VBoxEventType(46)

	

	
on_storage_controller_changed = VBoxEventType(51)

	

	
on_storage_device_changed = VBoxEventType(71)

	

	
on_usb_controller_changed = VBoxEventType(54)

	

	
on_usb_device_state_changed = VBoxEventType(55)

	

	
on_v_box_svc_availability_changed = VBoxEventType(68)

	

	
on_video_capture_changed = VBoxEventType(91)

	

	
on_vrde_server_changed = VBoxEventType(53)

	

	
on_vrde_server_info_changed = VBoxEventType(61)

	

	
snapshot_event = VBoxEventType(4)

	

	
vetoable = VBoxEventType(2)

	

	
class virtualbox.library.GuestMouseEventMode(value)

	The mode (relative, absolute, multi-touch) of a pointer event.

@todo A clear pattern seems to be emerging that we should usually have
multiple input devices active for different types of reporting, so we
should really have different event types for relative (including wheel),
absolute (not including wheel) and multi-touch events.

	
relative(0)

	Relative event.

	
absolute(1)

	Absolute event.

	
absolute = GuestMouseEventMode(1)

	

	
relative = GuestMouseEventMode(0)

	

	
class virtualbox.library.GuestMonitorChangedEventType(value)

	How the guest monitor has been changed.

	
enabled(0)

	The guest monitor has been enabled by the guest.

	
disabled(1)

	The guest monitor has been disabled by the guest.

	
new_origin(2)

	The guest monitor origin has changed in the guest.

	
disabled = GuestMonitorChangedEventType(1)

	

	
enabled = GuestMonitorChangedEventType(0)

	

	
new_origin = GuestMonitorChangedEventType(2)

	

	
class virtualbox.library.IVirtualBoxErrorInfo(interface=None)

	The IVirtualBoxErrorInfo interface represents extended error information.

Extended error information can be set by VirtualBox components after
unsuccessful or partially successful method invocation. This information
can be retrieved by the calling party as an IVirtualBoxErrorInfo object
and then shown to the client in addition to the plain 32-bit result code.

In MS COM, this interface extends the IErrorInfo interface,
in XPCOM, it extends the nsIException interface. In both cases,
it provides a set of common attributes to retrieve error
information.

Sometimes invocation of some component’s method may involve methods of
other components that may also fail (independently of this method’s
failure), or a series of non-fatal errors may precede a fatal error that
causes method failure. In cases like that, it may be desirable to preserve
information about all errors happened during method invocation and deliver
it to the caller. The next_p() attribute is intended
specifically for this purpose and allows to represent a chain of errors
through a single IVirtualBoxErrorInfo object set after method invocation.

errors are stored to a chain in the reverse order, i.e. the
initial error object you query right after method invocation is the last
error set by the callee, the object it points to in the @a next attribute
is the previous error and so on, up to the first error (which is the last
in the chain).

	
result_code

	Get int value for ‘resultCode’
Result code of the error.
Usually, it will be the same as the result code returned
by the method that provided this error information, but not
always. For example, on Win32, CoCreateInstance() will most
likely return E_NOINTERFACE upon unsuccessful component
instantiation attempt, but not the value the component factory
returned. Value is typed ‘long’, not ‘result’,
to make interface usable from scripting languages.

In MS COM, there is no equivalent.
In XPCOM, it is the same as nsIException::result.

	
result_detail

	Get int value for ‘resultDetail’
Optional result data of this error. This will vary depending on the
actual error usage. By default this attribute is not being used.

	
interface_id

	Get str value for ‘interfaceID’
UUID of the interface that defined the error.

In MS COM, it is the same as IErrorInfo::GetGUID, except for the
data type.
In XPCOM, there is no equivalent.

	
component

	Get str value for ‘component’
Name of the component that generated the error.

In MS COM, it is the same as IErrorInfo::GetSource.
In XPCOM, there is no equivalent.

	
text

	Get str value for ‘text’
Text description of the error.

In MS COM, it is the same as IErrorInfo::GetDescription.
In XPCOM, it is the same as nsIException::message.

	
next_p

	Get IVirtualBoxErrorInfo value for ‘next’
Next error object if there is any, or @c null otherwise.

In MS COM, there is no equivalent.
In XPCOM, it is the same as nsIException::inner.

	
class virtualbox.library.INATNetwork(interface=None)

	TBD: the idea, technically we can start any number of the NAT networks,
but we should expect that at some point we will get collisions because of
port-forwanding rules. so perhaps we should support only single instance of NAT
network.

	
network_name

	Get or set str value for ‘networkName’
TBD: the idea, technically we can start any number of the NAT networks,
but we should expect that at some point we will get collisions because of
port-forwanding rules. so perhaps we should support only single instance of NAT
network.

	
enabled

	Get or set bool value for ‘enabled’

	
network

	Get or set str value for ‘network’
This is CIDR IPv4 string. Specifying it user defines IPv4 addresses
of gateway (low address + 1) and DHCP server (= low address + 2).
Note: If there are defined IPv4 port-forward rules update of network
will be ignored (because new assignment could break existing rules).

	
gateway

	Get str value for ‘gateway’
This attribute is read-only. It’s recalculated on changing
network attribute (low address of network + 1).

	
i_pv6_enabled

	Get or set bool value for ‘IPv6Enabled’
This attribute define whether gateway will support IPv6 or not.

	
i_pv6_prefix

	Get or set str value for ‘IPv6Prefix’
This a CIDR IPv6 defining prefix for link-local addresses
autoconfiguration within network. Note: ignored if attribute
IPv6Enabled is false.

	
advertise_default_i_pv6_route_enabled

	Get or set bool value for ‘advertiseDefaultIPv6RouteEnabled’

	
need_dhcp_server

	Get or set bool value for ‘needDhcpServer’

	
event_source

	Get IEventSource value for ‘eventSource’

	
port_forward_rules4

	Get str value for ‘portForwardRules4’
Array of NAT port-forwarding rules in string representation,
in the following format:
“name:protocolid:[host ip]:host port:[guest ip]:guest port”.

	
local_mappings

	Get str value for ‘localMappings’
Array of mappings (address,offset),e.g. (“127.0.1.1=4”) maps 127.0.1.1 to networkid + 4.

	
add_local_mapping(hostid, offset)

	in hostid of type str

in offset of type int

	
loopback_ip6

	Get or set int value for ‘loopbackIp6’
Offset in ipv6 network from network id for address mapped into loopback6 interface of the host.

	
port_forward_rules6

	Get str value for ‘portForwardRules6’
Array of NAT port-forwarding rules in string representation, in the
following format: “name:protocolid:[host ip]:host port:[guest ip]:guest port”.

	
add_port_forward_rule(is_ipv6, rule_name, proto, host_ip, host_port, guest_ip, guest_port)

	Protocol handled with the rule.

in is_ipv6 of type bool

in rule_name of type str

	in proto of type NATProtocol

	Protocol handled with the rule.

	in host_ip of type str

	IP of the host interface to which the rule should apply.
An empty ip address is acceptable, in which case the NAT engine
binds the handling socket to any interface.

	in host_port of type int

	The port number to listen on.

	in guest_ip of type str

	The IP address of the guest which the NAT engine will forward
matching packets to. An empty IP address is not acceptable.

	in guest_port of type int

	The port number to forward.

	
remove_port_forward_rule(i_sipv6, rule_name)

	in i_sipv6 of type bool

in rule_name of type str

	
start(trunk_type)

	Type of internal network trunk.

	in trunk_type of type str

	Type of internal network trunk.

	
stop()

	

	
class virtualbox.library.IDHCPServer(interface=None)

	The IDHCPServer interface represents the VirtualBox DHCP server configuration.

To enumerate all the DHCP servers on the host, use the
IVirtualBox.dhcp_servers() attribute.

	
event_source

	Get IEventSource value for ‘eventSource’

	
enabled

	Get or set bool value for ‘enabled’
specifies if the DHCP server is enabled

	
ip_address

	Get str value for ‘IPAddress’
specifies server IP

	
network_mask

	Get str value for ‘networkMask’
specifies server network mask

	
network_name

	Get str value for ‘networkName’
specifies internal network name the server is used for

	
lower_ip

	Get str value for ‘lowerIP’
specifies from IP address in server address range

	
upper_ip

	Get str value for ‘upperIP’
specifies to IP address in server address range

	
add_global_option(option, value)

	in option of type DhcpOpt

in value of type str

	
global_options

	Get str value for ‘globalOptions’

	
vm_configs

	Get str value for ‘vmConfigs’

	
add_vm_slot_option(vmname, slot, option, value)

	in vmname of type str

in slot of type int

in option of type DhcpOpt

in value of type str

	
remove_vm_slot_options(vmname, slot)

	in vmname of type str

in slot of type int

	
get_vm_slot_options(vmname, slot)

	in vmname of type str

in slot of type int

return option of type str

	
get_mac_options(mac)

	in mac of type str

return option of type str

	
set_configuration(ip_address, network_mask, from_ip_address, to_ip_address)

	configures the server

	in ip_address of type str

	server IP address

	in network_mask of type str

	server network mask

	in from_ip_address of type str

	server From IP address for address range

	in to_ip_address of type str

	server To IP address for address range

	raises OleErrorInvalidarg

	invalid configuration supplied

	
start(network_name, trunk_name, trunk_type)

	Starts DHCP server process.

	in network_name of type str

	Name of internal network DHCP server should attach to.

	in trunk_name of type str

	Name of internal network trunk.

	in trunk_type of type str

	Type of internal network trunk.

	raises OleErrorFail

	Failed to start the process.

	
stop()

	Stops DHCP server process.

	raises OleErrorFail

	Failed to stop the process.

	
class virtualbox.library.IVFSExplorer(interface=None)

	The VFSExplorer interface unifies access to different file system
types. This includes local file systems as well remote file systems like
S3. For a list of supported types see VFSType .
An instance of this is returned by IAppliance.create_vfs_explorer() .

	
path

	Get str value for ‘path’
Returns the current path in the virtual file system.

	
type_p

	Get VFSType value for ‘type’
Returns the file system type which is currently in use.

	
update()

	Updates the internal list of files/directories from the
current directory level. Use entry_list() to get the full list
after a call to this method.

	return progress of type IProgress

	Progress object to track the operation completion.

	
cd(dir_p)

	Change the current directory level.

	in dir_p of type str

	The name of the directory to go in.

	return progress of type IProgress

	Progress object to track the operation completion.

	
cd_up()

	Go one directory upwards from the current directory level.

	return progress of type IProgress

	Progress object to track the operation completion.

	
entry_list()

	Returns a list of files/directories after a call to update() . The user is responsible for keeping this internal
list up do date.

	out names of type str

	The list of names for the entries.

	out types of type int

	The list of types for the entries. FsObjType

	out sizes of type int

	The list of sizes (in bytes) for the entries.

	out modes of type int

	The list of file modes (in octal form) for the entries.

	
exists(names)

	Checks if the given file list exists in the current directory
level.

	in names of type str

	The names to check.

	return exists of type str

	The names which exist.

	
remove(names)

	Deletes the given files in the current directory level.

	in names of type str

	The names to remove.

	return progress of type IProgress

	Progress object to track the operation completion.

	
class virtualbox.library.ICertificate(interface=None)

	X.509 certificate details.

	
version_number

	Get CertificateVersion value for ‘versionNumber’
Certificate version number.

	
serial_number

	Get str value for ‘serialNumber’
Certificate serial number.

	
signature_algorithm_oid

	Get str value for ‘signatureAlgorithmOID’
The dotted OID of the signature algorithm.

	
signature_algorithm_name

	Get str value for ‘signatureAlgorithmName’
The signature algorithm name if known (if known).

	
issuer_name

	Get str value for ‘issuerName’
Issuer name. Each member of the array is on the format
COMPONENT=NAME, e.g. “C=DE”, “ST=Example”, “L=For Instance”, “O=Beispiel GmbH”,
“CN=beispiel.example.org”.

	
subject_name

	Get str value for ‘subjectName’
Subject name. Same format as issuerName.

	
friendly_name

	Get str value for ‘friendlyName’
Friendly subject name or similar.

	
validity_period_not_before

	Get str value for ‘validityPeriodNotBefore’
Certificate not valid before ISO time stamp.

	
validity_period_not_after

	Get str value for ‘validityPeriodNotAfter’
Certificate not valid after ISO time stamp.

	
public_key_algorithm_oid

	Get str value for ‘publicKeyAlgorithmOID’
The dotted OID of the public key algorithm.

	
public_key_algorithm

	Get str value for ‘publicKeyAlgorithm’
The public key algorithm name (if known).

	
subject_public_key

	Get str value for ‘subjectPublicKey’
The raw public key bytes.

	
issuer_unique_identifier

	Get str value for ‘issuerUniqueIdentifier’
Unique identifier of the issuer (empty string if not present).

	
subject_unique_identifier

	Get str value for ‘subjectUniqueIdentifier’
Unique identifier of this certificate (empty string if not present).

	
certificate_authority

	Get bool value for ‘certificateAuthority’
Whether this certificate is a certificate authority. Will return E_FAIL
if this attribute is not present.

	
key_usage

	Get int value for ‘keyUsage’
Key usage mask. Will return 0 if not present.

	
extended_key_usage

	Get str value for ‘extendedKeyUsage’
Array of dotted extended key usage OIDs. Empty array if not present.

	
raw_cert_data

	Get str value for ‘rawCertData’
The raw certificate bytes.

	
self_signed

	Get bool value for ‘selfSigned’
Set if self signed certificate.

	
trusted

	Get bool value for ‘trusted’
Set if the certificate is trusted (by the parent object).

	
expired

	Get bool value for ‘expired’
Set if the certificate has expired (relevant to the parent object)/

	
is_currently_expired()

	Tests if the certificate has expired at the present time according to
the X.509 validity of the certificate.

return result of type bool

	
query_info(what)

	Way to extend the interface.

in what of type int

return result of type str

	
class virtualbox.library.IInternalMachineControl(interface=None)

	Updates the VM state.

This operation will also update the settings file with the correct
information about the saved state file and delete this file from disk
when appropriate.

	
update_state(state)

	Updates the VM state.

This operation will also update the settings file with the correct
information about the saved state file and delete this file from disk
when appropriate.

in state of type MachineState

	
begin_power_up(progress)

	Tells VBoxSVC that IConsole.power_up() is under ways and
gives it the progress object that should be part of any pending
IMachine.launch_vm_process() operations. The progress
object may be called back to reflect an early cancelation, so some care
have to be taken with respect to any cancelation callbacks. The console
object will call IInternalMachineControl.end_power_up()
to signal the completion of the progress object.

in progress of type IProgress

	
end_power_up(result)

	Tells VBoxSVC that IConsole.power_up() has completed.
This method may query status information from the progress object it
received in IInternalMachineControl.begin_power_up() and copy
it over to any in-progress IMachine.launch_vm_process()
call in order to complete that progress object.

in result of type int

	
begin_powering_down()

	Called by the VM process to inform the server it wants to
stop the VM execution and power down.

	out progress of type IProgress

	Progress object created by VBoxSVC to wait until
the VM is powered down.

	
end_powering_down(result, err_msg)

	Called by the VM process to inform the server that powering
down previously requested by #beginPoweringDown is either
successfully finished or there was a failure.

	in result of type int

	@c S_OK to indicate success.

	in err_msg of type str

	@c human readable error message in case of failure.

	raises VBoxErrorFileError

	Settings file not accessible.

	raises VBoxErrorXmlError

	Could not parse the settings file.

	
run_usb_device_filters(device)

	Asks the server to run USB devices filters of the associated
machine against the given USB device and tell if there is
a match.

Intended to be used only for remote USB devices. Local
ones don’t require to call this method (this is done
implicitly by the Host and USBProxyService).

in device of type IUSBDevice

out matched of type bool

out masked_interfaces of type int

	
capture_usb_device(id_p, capture_filename)

	Requests a capture of the given host USB device.
When the request is completed, the VM process will
get a IInternalSessionControl.on_usb_device_attach()
notification.

in id_p of type str

in capture_filename of type str

	
detach_usb_device(id_p, done)

	Notification that a VM is going to detach (@a done = @c false) or has
already detached (@a done = @c true) the given USB device.
When the @a done = @c true request is completed, the VM process will
get a IInternalSessionControl.on_usb_device_detach()
notification.

In the @a done = @c true case, the server must run its own filters
and filters of all VMs but this one on the detached device
as if it were just attached to the host computer.

in id_p of type str

in done of type bool

	
auto_capture_usb_devices()

	Requests a capture all matching USB devices attached to the host.
When the request is completed, the VM process will
get a IInternalSessionControl.on_usb_device_attach()
notification per every captured device.

	
detach_all_usb_devices(done)

	Notification that a VM that is being powered down. The done
parameter indicates whether which stage of the power down
we’re at. When @a done = @c false the VM is announcing its
intentions, while when @a done = @c true the VM is reporting
what it has done.

In the @a done = @c true case, the server must run its own filters
and filters of all VMs but this one on all detach devices as
if they were just attached to the host computer.

in done of type bool

	
on_session_end(session)

	Triggered by the given session object when the session is about
to close normally.

	in session of type ISession

	Session that is being closed

	return progress of type IProgress

	Used to wait until the corresponding machine is actually
dissociated from the given session on the server.
Returned only when this session is a direct one.

	
finish_online_merge_medium()

	Gets called by IInternalSessionControl.online_merge_medium() .
All necessary state information is available at the called object.

	
pull_guest_properties()

	Get the list of the guest properties matching a set of patterns along
with their values, time stamps and flags and give responsibility for
managing properties to the console.

	out names of type str

	The names of the properties returned.

	out values of type str

	The values of the properties returned. The array entries match the
corresponding entries in the @a name array.

	out timestamps of type int

	The time stamps of the properties returned. The array entries match
the corresponding entries in the @a name array.

	out flags of type str

	The flags of the properties returned. The array entries match the
corresponding entries in the @a name array.

	
push_guest_property(name, value, timestamp, flags)

	Update a single guest property in IMachine.

	in name of type str

	The name of the property to be updated.

	in value of type str

	The value of the property.

	in timestamp of type int

	The timestamp of the property.

	in flags of type str

	The flags of the property.

	
lock_media()

	Locks all media attached to the machine for writing and parents of
attached differencing media (if any) for reading. This operation is
atomic so that if it fails no media is actually locked.

This method is intended to be called when the machine is in Starting or
Restoring state. The locked media will be automatically unlocked when
the machine is powered off or crashed.

	
unlock_media()

	Unlocks all media previously locked using
IInternalMachineControl.lock_media() .

This method is intended to be used with teleportation so that it is
possible to teleport between processes on the same machine.

	
eject_medium(attachment)

	Tells VBoxSVC that the guest has ejected the medium associated with
the medium attachment.

	in attachment of type IMediumAttachment

	The medium attachment where the eject happened.

	return new_attachment of type IMediumAttachment

	A new reference to the medium attachment, as the config change can
result in the creation of a new instance.

	
report_vm_statistics(valid_stats, cpu_user, cpu_kernel, cpu_idle, mem_total, mem_free, mem_balloon, mem_shared, mem_cache, paged_total, mem_alloc_total, mem_free_total, mem_balloon_total, mem_shared_total, vm_net_rx, vm_net_tx)

	Passes statistics collected by VM (including guest statistics) to VBoxSVC.

	in valid_stats of type int

	Mask defining which parameters are valid. For example: 0x11 means
that cpuIdle and XXX are valid. Other parameters should be ignored.

	in cpu_user of type int

	Percentage of processor time spent in user mode as seen by the guest.

	in cpu_kernel of type int

	Percentage of processor time spent in kernel mode as seen by the guest.

	in cpu_idle of type int

	Percentage of processor time spent idling as seen by the guest.

	in mem_total of type int

	Total amount of physical guest RAM.

	in mem_free of type int

	Free amount of physical guest RAM.

	in mem_balloon of type int

	Amount of ballooned physical guest RAM.

	in mem_shared of type int

	Amount of shared physical guest RAM.

	in mem_cache of type int

	Total amount of guest (disk) cache memory.

	in paged_total of type int

	Total amount of space in the page file.

	in mem_alloc_total of type int

	Total amount of memory allocated by the hypervisor.

	in mem_free_total of type int

	Total amount of free memory available in the hypervisor.

	in mem_balloon_total of type int

	Total amount of memory ballooned by the hypervisor.

	in mem_shared_total of type int

	Total amount of shared memory in the hypervisor.

	in vm_net_rx of type int

	Network receive rate for VM.

	in vm_net_tx of type int

	Network transmit rate for VM.

	
authenticate_external(auth_params)

	Verify credentials using the external auth library.

	in auth_params of type str

	The auth parameters, credentials, etc.

	out result of type str

	The authentification result.

	
class virtualbox.library.IBIOSSettings(interface=None)

	The IBIOSSettings interface represents BIOS settings of the virtual
machine. This is used only in the IMachine.bios_settings() attribute.

	
logo_fade_in

	Get or set bool value for ‘logoFadeIn’
Fade in flag for BIOS logo animation.

	
logo_fade_out

	Get or set bool value for ‘logoFadeOut’
Fade out flag for BIOS logo animation.

	
logo_display_time

	Get or set int value for ‘logoDisplayTime’
BIOS logo display time in milliseconds (0 = default).

	
logo_image_path

	Get or set str value for ‘logoImagePath’
Local file system path for external BIOS splash image. Empty string
means the default image is shown on boot.

	
boot_menu_mode

	Get or set BIOSBootMenuMode value for ‘bootMenuMode’
Mode of the BIOS boot device menu.

	
acpi_enabled

	Get or set bool value for ‘ACPIEnabled’
ACPI support flag.

	
ioapic_enabled

	Get or set bool value for ‘IOAPICEnabled’
I/O-APIC support flag. If set, VirtualBox will provide an I/O-APIC
and support IRQs above 15.

	
apic_mode

	Get or set APICMode value for ‘APICMode’
APIC mode to set up by the firmware.

	
time_offset

	Get or set int value for ‘timeOffset’
Offset in milliseconds from the host system time. This allows for
guests running with a different system date/time than the host.
It is equivalent to setting the system date/time in the BIOS except
it is not an absolute value but a relative one. Guest Additions
time synchronization honors this offset.

	
pxe_debug_enabled

	Get or set bool value for ‘PXEDebugEnabled’
PXE debug logging flag. If set, VirtualBox will write extensive
PXE trace information to the release log.

	
non_volatile_storage_file

	Get str value for ‘nonVolatileStorageFile’
The location of the file storing the non-volatile memory content when
the VM is powered off. The file does not always exist.

This feature will be realized after VirtualBox v4.3.0.

	
class virtualbox.library.IPCIAddress(interface=None)

	Address on the PCI bus.

	
bus

	Get or set int value for ‘bus’
Bus number.

	
device

	Get or set int value for ‘device’
Device number.

	
dev_function

	Get or set int value for ‘devFunction’
Device function number.

	
as_long()

	Convert PCI address into long.

return result of type int

	
from_long(number)

	Make PCI address from long.

in number of type int

	
class virtualbox.library.IPCIDeviceAttachment(interface=None)

	Information about PCI attachments.

	
name

	Get str value for ‘name’
Device name.

	
is_physical_device

	Get bool value for ‘isPhysicalDevice’
If this is physical or virtual device.

	
host_address

	Get int value for ‘hostAddress’
Address of device on the host, applicable only to host devices.

	
guest_address

	Get int value for ‘guestAddress’
Address of device in the guest.

	
class virtualbox.library.IEmulatedUSB(interface=None)

	Manages emulated USB devices.

	
webcam_attach(path, settings)

	Attaches the emulated USB webcam to the VM, which will use a host video capture device.

	in path of type str

	The host path of the capture device to use.

	in settings of type str

	Optional settings.

	
webcam_detach(path)

	Detaches the emulated USB webcam from the VM

	in path of type str

	The host path of the capture device to detach.

	
webcams

	Get str value for ‘webcams’
Lists attached virtual webcams.

	
class virtualbox.library.IVRDEServerInfo(interface=None)

	Contains information about the remote desktop (VRDE) server capabilities and status.
This is used in the IConsole.vrde_server_info() attribute.

	
active

	Get bool value for ‘active’
Whether the remote desktop connection is active.

	
port

	Get int value for ‘port’
VRDE server port number. If this property is equal to 0, then
the VRDE server failed to start, usually because there are no free IP
ports to bind to. If this property is equal to -1, then the VRDE
server has not yet been started.

	
number_of_clients

	Get int value for ‘numberOfClients’
How many times a client connected.

	
begin_time

	Get int value for ‘beginTime’
When the last connection was established, in milliseconds since 1970-01-01 UTC.

	
end_time

	Get int value for ‘endTime’
When the last connection was terminated or the current time, if
connection is still active, in milliseconds since 1970-01-01 UTC.

	
bytes_sent

	Get int value for ‘bytesSent’
How many bytes were sent in last or current, if still active, connection.

	
bytes_sent_total

	Get int value for ‘bytesSentTotal’
How many bytes were sent in all connections.

	
bytes_received

	Get int value for ‘bytesReceived’
How many bytes were received in last or current, if still active, connection.

	
bytes_received_total

	Get int value for ‘bytesReceivedTotal’
How many bytes were received in all connections.

	
user

	Get str value for ‘user’
Login user name supplied by the client.

	
domain

	Get str value for ‘domain’
Login domain name supplied by the client.

	
client_name

	Get str value for ‘clientName’
The client name supplied by the client.

	
client_ip

	Get str value for ‘clientIP’
The IP address of the client.

	
client_version

	Get int value for ‘clientVersion’
The client software version number.

	
encryption_style

	Get int value for ‘encryptionStyle’
Public key exchange method used when connection was established.
Values: 0 - RDP4 public key exchange scheme.
1 - X509 certificates were sent to client.

	
class virtualbox.library.IHostNetworkInterface(interface=None)

	Represents one of host’s network interfaces. IP V6 address and network
mask are strings of 32 hexadecimal digits grouped by four. Groups are
separated by colons.
For example, fe80:0000:0000:0000:021e:c2ff:fed2:b030.

	
name

	Get str value for ‘name’
Returns the host network interface name.

	
short_name

	Get str value for ‘shortName’
Returns the host network interface short name.

	
id_p

	Get str value for ‘id’
Returns the interface UUID.

	
network_name

	Get str value for ‘networkName’
Returns the name of a virtual network the interface gets attached to.

	
dhcp_enabled

	Get bool value for ‘DHCPEnabled’
Specifies whether the DHCP is enabled for the interface.

	
ip_address

	Get str value for ‘IPAddress’
Returns the IP V4 address of the interface.

	
network_mask

	Get str value for ‘networkMask’
Returns the network mask of the interface.

	
ipv6_supported

	Get bool value for ‘IPV6Supported’
Specifies whether the IP V6 is supported/enabled for the interface.

	
ipv6_address

	Get str value for ‘IPV6Address’
Returns the IP V6 address of the interface.

	
ipv6_network_mask_prefix_length

	Get int value for ‘IPV6NetworkMaskPrefixLength’
Returns the length IP V6 network mask prefix of the interface.

	
hardware_address

	Get str value for ‘hardwareAddress’
Returns the hardware address. For Ethernet it is MAC address.

	
medium_type

	Get HostNetworkInterfaceMediumType value for ‘mediumType’
Type of protocol encapsulation used.

	
status

	Get HostNetworkInterfaceStatus value for ‘status’
Status of the interface.

	
interface_type

	Get HostNetworkInterfaceType value for ‘interfaceType’
specifies the host interface type.

	
enable_static_ip_config(ip_address, network_mask)

	sets and enables the static IP V4 configuration for the given interface.

	in ip_address of type str

	IP address.

	in network_mask of type str

	network mask.

	
enable_static_ip_config_v6(ipv6_address, ipv6_network_mask_prefix_length)

	sets and enables the static IP V6 configuration for the given interface.

	in ipv6_address of type str

	IP address.

	in ipv6_network_mask_prefix_length of type int

	network mask.

	
enable_dynamic_ip_config()

	enables the dynamic IP configuration.

	
dhcp_rediscover()

	refreshes the IP configuration for DHCP-enabled interface.

	
class virtualbox.library.IHostVideoInputDevice(interface=None)

	Represents one of host’s video capture devices, for example a webcam.

	
name

	Get str value for ‘name’
User friendly name.

	
path

	Get str value for ‘path’
The host path of the device.

	
alias

	Get str value for ‘alias’
An alias which can be used for IConsole::webcamAttach

	
class virtualbox.library.ISystemProperties(interface=None)

	The ISystemProperties interface represents global properties of the given
VirtualBox installation.

These properties define limits and default values for various attributes
and parameters. Most of the properties are read-only, but some can be
changed by a user.

	
min_guest_ram

	Get int value for ‘minGuestRAM’
Minimum guest system memory in Megabytes.

	
max_guest_ram

	Get int value for ‘maxGuestRAM’
Maximum guest system memory in Megabytes.

	
min_guest_vram

	Get int value for ‘minGuestVRAM’
Minimum guest video memory in Megabytes.

	
max_guest_vram

	Get int value for ‘maxGuestVRAM’
Maximum guest video memory in Megabytes.

	
min_guest_cpu_count

	Get int value for ‘minGuestCPUCount’
Minimum CPU count.

	
max_guest_cpu_count

	Get int value for ‘maxGuestCPUCount’
Maximum CPU count.

	
max_guest_monitors

	Get int value for ‘maxGuestMonitors’
Maximum of monitors which could be connected.

	
info_vd_size

	Get int value for ‘infoVDSize’
Maximum size of a virtual disk image in bytes. Informational value,
does not reflect the limits of any virtual disk image format.

	
serial_port_count

	Get int value for ‘serialPortCount’
Maximum number of serial ports associated with every
IMachine instance.

	
parallel_port_count

	Get int value for ‘parallelPortCount’
Maximum number of parallel ports associated with every
IMachine instance.

	
max_boot_position

	Get int value for ‘maxBootPosition’
Maximum device position in the boot order. This value corresponds
to the total number of devices a machine can boot from, to make it
possible to include all possible devices to the boot list.
IMachine.set_boot_order()

	
raw_mode_supported

	Get bool value for ‘rawModeSupported’
Indicates whether VirtualBox was built with raw-mode support.

When this reads as False, the HWVirtExPropertyType.enabled
setting will be ignored and assumed to be True.

	
exclusive_hw_virt

	Get or set bool value for ‘exclusiveHwVirt’
Exclusive use of hardware virtualization by VirtualBox. When enabled,
VirtualBox assumes it can obtain full and exclusive access to the VT-x
or AMD-V feature of the host. To share hardware virtualization with
other hypervisors, this property must be disabled.

This is ignored on OS X, the kernel mediates hardware
access there.

	
default_machine_folder

	Get or set str value for ‘defaultMachineFolder’
Full path to the default directory used to create new or open
existing machines when a machine settings file name contains no
path.

Starting with VirtualBox 4.0, by default, this attribute contains
the full path of folder named “VirtualBox VMs” in the user’s
home directory, which depends on the host platform.

When setting this attribute, a full path must be specified.
Setting this property to @c null or an empty string or the
special value “Machines” (for compatibility reasons) will restore
that default value.

If the folder specified herein does not exist, it will be created
automatically as needed.

IVirtualBox.create_machine() ,
IVirtualBox.open_machine()

	
logging_level

	Get or set str value for ‘loggingLevel’
Specifies the logging level in current use by VirtualBox.

	
medium_formats

	Get IMediumFormat value for ‘mediumFormats’
List of all medium storage formats supported by this VirtualBox
installation.

Keep in mind that the medium format identifier
(IMediumFormat.id_p()) used in other API calls like
IVirtualBox.create_medium() to refer to a particular
medium format is a case-insensitive string. This means that, for
example, all of the following strings:

"VDI"
"vdi"
"VdI"

refer to the same medium format.

Note that the virtual medium framework is backend-based, therefore
the list of supported formats depends on what backends are currently
installed.

IMediumFormat

	
default_hard_disk_format

	Get or set str value for ‘defaultHardDiskFormat’
Identifier of the default medium format used by VirtualBox.

The medium format set by this attribute is used by VirtualBox
when the medium format was not specified explicitly. One example is
IVirtualBox.create_medium() with the empty
format argument. A more complex example is implicit creation of
differencing media when taking a snapshot of a virtual machine:
this operation will try to use a format of the parent medium first
and if this format does not support differencing media the default
format specified by this argument will be used.

The list of supported medium formats may be obtained by the
medium_formats() call. Note that the default medium
format must have a capability to create differencing media;
otherwise operations that create media implicitly may fail
unexpectedly.

The initial value of this property is “VDI” in the current
version of the VirtualBox product, but may change in the future.

Setting this property to @c null or empty string will restore the
initial value.

medium_formats() ,
IMediumFormat.id_p() ,
IVirtualBox.create_medium()

	
free_disk_space_warning

	Get or set int value for ‘freeDiskSpaceWarning’
Issue a warning if the free disk space is below (or in some disk
intensive operation is expected to go below) the given size in
bytes.

	
free_disk_space_percent_warning

	Get or set int value for ‘freeDiskSpacePercentWarning’
Issue a warning if the free disk space is below (or in some disk
intensive operation is expected to go below) the given percentage.

	
free_disk_space_error

	Get or set int value for ‘freeDiskSpaceError’
Issue an error if the free disk space is below (or in some disk
intensive operation is expected to go below) the given size in
bytes.

	
free_disk_space_percent_error

	Get or set int value for ‘freeDiskSpacePercentError’
Issue an error if the free disk space is below (or in some disk
intensive operation is expected to go below) the given percentage.

	
vrde_auth_library

	Get or set str value for ‘VRDEAuthLibrary’
Library that provides authentication for Remote Desktop clients. The library
is used if a virtual machine’s authentication type is set to “external”
in the VM RemoteDisplay configuration.

The system library extension (”.DLL” or ”.so”) must be omitted.
A full path can be specified; if not, then the library must reside on the
system’s default library path.

The default value of this property is “VBoxAuth”. There is a library
of that name in one of the default VirtualBox library directories.

For details about VirtualBox authentication libraries and how to implement
them, please refer to the VirtualBox manual.

Setting this property to @c null or empty string will restore the
initial value.

	
web_service_auth_library

	Get or set str value for ‘webServiceAuthLibrary’
Library that provides authentication for webservice clients. The library
is used if a virtual machine’s authentication type is set to “external”
in the VM RemoteDisplay configuration and will be called from
within the IWebsessionManager.logon() implementation.

As opposed to ISystemProperties.vrde_auth_library() ,
there is no per-VM setting for this, as the webservice is a global
resource (if it is running). Only for this setting (for the webservice),
setting this value to a literal “null” string disables authentication,
meaning that IWebsessionManager.logon() will always succeed,
no matter what user name and password are supplied.

The initial value of this property is “VBoxAuth”,
meaning that the webservice will use the same authentication
library that is used by default for VRDE (again, see
ISystemProperties.vrde_auth_library()).
The format and calling convention of authentication libraries
is the same for the webservice as it is for VRDE.

Setting this property to @c null or empty string will restore the
initial value.

	
default_vrde_ext_pack

	Get or set str value for ‘defaultVRDEExtPack’
The name of the extension pack providing the default VRDE.

This attribute is for choosing between multiple extension packs
providing VRDE. If only one is installed, it will automatically be the
default one. The attribute value can be empty if no VRDE extension
pack is installed.

For details about VirtualBox Remote Desktop Extension and how to
implement one, please refer to the VirtualBox SDK.

	
log_history_count

	Get or set int value for ‘logHistoryCount’
This value specifies how many old release log files are kept.

	
default_audio_driver

	Get AudioDriverType value for ‘defaultAudioDriver’
This value hold the default audio driver for the current
system.

	
autostart_database_path

	Get or set str value for ‘autostartDatabasePath’
The path to the autostart database. Depending on the host this might
be a filesystem path or something else.

	
default_additions_iso

	Get or set str value for ‘defaultAdditionsISO’
The path to the default Guest Additions ISO image. Can be empty if
the location is not known in this installation.

	
default_frontend

	Get or set str value for ‘defaultFrontend’
Selects which VM frontend should be used by default when launching
a VM through the IMachine.launch_vm_process() method.
Empty or @c null strings do not define a particular default, it is up
to IMachine.launch_vm_process() to select one. See the
description of IMachine.launch_vm_process() for the valid
frontend types.

This global setting is overridden by the per-VM attribute
IMachine.default_frontend() or a frontend type
passed to IMachine.launch_vm_process() .

	
screen_shot_formats

	Get BitmapFormat value for ‘screenShotFormats’
Supported bitmap formats which can be used with takeScreenShot
and takeScreenShotToArray methods.

	
get_max_network_adapters(chipset)

	Maximum total number of network adapters associated with every
IMachine instance.

	in chipset of type ChipsetType

	The chipset type to get the value for.

	return max_network_adapters of type int

	The maximum total number of network adapters allowed.

	
get_max_network_adapters_of_type(chipset, type_p)

	Maximum number of network adapters of a given attachment type,
associated with every IMachine instance.

	in chipset of type ChipsetType

	The chipset type to get the value for.

	in type_p of type NetworkAttachmentType

	Type of attachment.

	return max_network_adapters of type int

	The maximum number of network adapters allowed for
particular chipset and attachment type.

	
get_max_devices_per_port_for_storage_bus(bus)

	Returns the maximum number of devices which can be attached to a port
for the given storage bus.

	in bus of type StorageBus

	The storage bus type to get the value for.

	return max_devices_per_port of type int

	The maximum number of devices which can be attached to the port for the given
storage bus.

	
get_min_port_count_for_storage_bus(bus)

	Returns the minimum number of ports the given storage bus supports.

	in bus of type StorageBus

	The storage bus type to get the value for.

	return min_port_count of type int

	The minimum number of ports for the given storage bus.

	
get_max_port_count_for_storage_bus(bus)

	Returns the maximum number of ports the given storage bus supports.

	in bus of type StorageBus

	The storage bus type to get the value for.

	return max_port_count of type int

	The maximum number of ports for the given storage bus.

	
get_max_instances_of_storage_bus(chipset, bus)

	Returns the maximum number of storage bus instances which
can be configured for each VM. This corresponds to the number of
storage controllers one can have. Value may depend on chipset type
used.

	in chipset of type ChipsetType

	The chipset type to get the value for.

	in bus of type StorageBus

	The storage bus type to get the value for.

	return max_instances of type int

	The maximum number of instances for the given storage bus.

	
get_device_types_for_storage_bus(bus)

	Returns list of all the supported device types
(DeviceType) for the given type of storage
bus.

	in bus of type StorageBus

	The storage bus type to get the value for.

	return device_types of type DeviceType

	The list of all supported device types for the given storage bus.

	
get_default_io_cache_setting_for_storage_controller(controller_type)

	Returns the default I/O cache setting for the
given storage controller

	in controller_type of type StorageControllerType

	The storage controller type to get the setting for.

	return enabled of type bool

	Returned flag indicating the default value

	
get_storage_controller_hotplug_capable(controller_type)

	Returns whether the given storage controller supports
hot-plugging devices.

	in controller_type of type StorageControllerType

	The storage controller to check the setting for.

	return hotplug_capable of type bool

	Returned flag indicating whether the controller is hotplug capable

	
get_max_instances_of_usb_controller_type(chipset, type_p)

	Returns the maximum number of USB controller instances which
can be configured for each VM. This corresponds to the number of
USB controllers one can have. Value may depend on chipset type
used.

	in chipset of type ChipsetType

	The chipset type to get the value for.

	in type_p of type USBControllerType

	The USB controller type to get the value for.

	return max_instances of type int

	The maximum number of instances for the given USB controller type.

	
class virtualbox.library.IAdditionsFacility(interface=None)

	Structure representing a Guest Additions facility.

	
class_type

	Get AdditionsFacilityClass value for ‘classType’
The class this facility is part of.

	
last_updated

	Get int value for ‘lastUpdated’
Time stamp of the last status update,
in milliseconds since 1970-01-01 UTC.

	
name

	Get str value for ‘name’
The facility’s friendly name.

	
status

	Get AdditionsFacilityStatus value for ‘status’
The current status.

	
type_p

	Get AdditionsFacilityType value for ‘type’
The facility’s type ID.

	
class virtualbox.library.IDnDBase(interface=None)

	Base abstract interface for drag’n drop.

	
formats

	Get str value for ‘formats’
Returns all supported drag’n drop formats.

	
protocol_version

	Get int value for ‘protocolVersion’
Returns the protocol version which is used to communicate
with the guest.

	
is_format_supported(format_p)

	Checks if a specific drag’n drop MIME / Content-type format is supported.

	in format_p of type str

	Format to check for.

	return supported of type bool

	Returns @c true if the specified format is supported, @c false if not.

	
add_formats(formats)

	Adds MIME / Content-type formats to the supported formats.

	in formats of type str

	Collection of formats to add.

	
remove_formats(formats)

	Removes MIME / Content-type formats from the supported formats.

	in formats of type str

	Collection of formats to remove.

	
class virtualbox.library.IDnDSource(interface=None)

	Abstract interface for handling drag’n drop sources.

	
drag_is_pending(screen_id)

	Ask the source if there is any drag and drop operation pending.
If no drag and drop operation is pending currently, DnDAction_Ignore is returned.

	in screen_id of type int

	The screen ID where the drag and drop event occurred.

	out formats of type str

	On return the supported mime types.

	out allowed_actions of type DnDAction

	On return the actions which are allowed.

	return default_action of type DnDAction

	On return the default action to use.

	raises VBoxErrorVmError

	VMM device is not available.

	
drop(format_p, action)

	Informs the source that a drop event occurred for a pending
drag and drop operation.

	in format_p of type str

	The mime type the data must be in.

	in action of type DnDAction

	The action to use.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorVmError

	VMM device is not available.

	
receive_data()

	Receive the data of a previously drag and drop event from the source.

	return data of type str

	The actual data.

	raises VBoxErrorVmError

	VMM device is not available.

	
class virtualbox.library.IGuestDnDSource(interface=None)

	Implementation of the IDnDSource object
for source drag’n drop operations on the guest.

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.IDnDTarget(interface=None)

	Abstract interface for handling drag’n drop targets.

	
enter(screen_id, y, x, default_action, allowed_actions, formats)

	Informs the target about a drag and drop enter event.

	in screen_id of type int

	The screen ID where the drag and drop event occurred.

	in y of type int

	Y-position of the event.

	in x of type int

	X-position of the event.

	in default_action of type DnDAction

	The default action to use.

	in allowed_actions of type DnDAction

	The actions which are allowed.

	in formats of type str

	The supported MIME types.

	return result_action of type DnDAction

	The resulting action of this event.

	raises VBoxErrorVmError

	VMM device is not available.

	
move(screen_id, x, y, default_action, allowed_actions, formats)

	Informs the target about a drag and drop move event.

	in screen_id of type int

	The screen ID where the drag and drop event occurred.

	in x of type int

	X-position of the event.

	in y of type int

	Y-position of the event.

	in default_action of type DnDAction

	The default action to use.

	in allowed_actions of type DnDAction

	The actions which are allowed.

	in formats of type str

	The supported MIME types.

	return result_action of type DnDAction

	The resulting action of this event.

	raises VBoxErrorVmError

	VMM device is not available.

	
leave(screen_id)

	Informs the target about a drag and drop leave event.

	in screen_id of type int

	The screen ID where the drag and drop event occurred.

	raises VBoxErrorVmError

	VMM device is not available.

	
drop(screen_id, x, y, default_action, allowed_actions, formats)

	Informs the target about a drop event.

	in screen_id of type int

	The screen ID where the Drag and Drop event occurred.

	in x of type int

	X-position of the event.

	in y of type int

	Y-position of the event.

	in default_action of type DnDAction

	The default action to use.

	in allowed_actions of type DnDAction

	The actions which are allowed.

	in formats of type str

	The supported MIME types.

	out format_p of type str

	The resulting format of this event.

	return result_action of type DnDAction

	The resulting action of this event.

	raises VBoxErrorVmError

	VMM device is not available.

	
send_data(screen_id, format_p, data)

	Initiates sending data to the target.

	in screen_id of type int

	The screen ID where the drag and drop event occurred.

	in format_p of type str

	The MIME type the data is in.

	in data of type str

	The actual data.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorVmError

	VMM device is not available.

	
cancel()

	Requests cancelling the current operation. The target can veto
the request in case the operation is not cancelable at the moment.

	return veto of type bool

	Whether the target has vetoed cancelling the operation.

	raises VBoxErrorVmError

	VMM device is not available.

	
class virtualbox.library.IGuestDnDTarget(interface=None)

	Implementation of the IDnDTarget object
for target drag’n drop operations on the guest.

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.IDirectory(interface=None)

	Abstract parent interface for directories handled by VirtualBox.

	
directory_name

	Get str value for ‘directoryName’
The path specified when opening the directory.

	
filter_p

	Get str value for ‘filter’
Directory listing filter to (specified when opening the directory).

	
close()

	Closes this directory. After closing operations like reading the next
directory entry will not be possible anymore.

	
read()

	Reads the next directory entry of this directory.

	return obj_info of type IFsObjInfo

	Object information of the current directory entry read. Also see
IFsObjInfo .

	raises VBoxErrorObjectNotFound

	No more directory entries to read.

	
class virtualbox.library.IGuestDirectory(interface=None)

	Implementation of the IDirectory object
for directories in the guest.

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.IFile(interface=None)

	Abstract parent interface for files handled by VirtualBox.

	
event_source

	Get IEventSource value for ‘eventSource’
Event source for file events.

	
id_p

	Get int value for ‘id’
The ID VirtualBox internally assigned to the open file.

	
initial_size

	Get int value for ‘initialSize’
The initial size in bytes when opened.

	
offset

	Get int value for ‘offset’
The current file position.

The file current position always applies to the IFile.read()
method, which updates it upon return. Same goes for the IFile.write()
method except when IFile.access_mode() is FileAccessMode.append_only
or FileAccessMode.append_read , where it will always write
to the end of the file and will leave this attribute unchanged.

The IFile.seek() is used to change this attribute without
transfering any file data like read and write does.

	
status

	Get FileStatus value for ‘status’
Current file status.

	
file_name

	Get str value for ‘fileName’
Full path of the actual file name of this file.
<!– r=bird: The ‘actual’ file name is too tough, we cannot guarentee
that on unix guests. Seeing how IGuestDirectory did things,
I’m questioning the ‘Full path’ part too. Not urgent to check. –>

	
creation_mode

	Get int value for ‘creationMode’
The UNIX-style creation mode specified when opening the file.

	
open_action

	Get FileOpenAction value for ‘openAction’
The opening action specified when opening the file.

	
access_mode

	Get FileAccessMode value for ‘accessMode’
The file access mode.

	
close()

	Closes this file. After closing operations like reading data,
writing data or querying information will not be possible anymore.

	
query_info()

	Queries information about this file.

	return obj_info of type IFsObjInfo

	Object information of this file. Also see
IFsObjInfo .

	raises OleErrorNotimpl

	The method is not implemented yet.

	
query_size()

	Queries the current file size.

	return size of type int

	Queried file size.

	raises OleErrorNotimpl

	The method is not implemented yet.

	
read(to_read, timeout_ms)

	Reads data from this file.

	in to_read of type int

	Number of bytes to read.

	in timeout_ms of type int

	Timeout (in ms) to wait for the operation to complete.
Pass 0 for an infinite timeout.

	return data of type str

	Array of data read.

	raises OleErrorNotimpl

	The method is not implemented yet.

	
read_at(offset, to_read, timeout_ms)

	Reads data from an offset of this file.

	in offset of type int

	Offset in bytes to start reading.

	in to_read of type int

	Number of bytes to read.

	in timeout_ms of type int

	Timeout (in ms) to wait for the operation to complete.
Pass 0 for an infinite timeout.

	return data of type str

	Array of data read.

	raises OleErrorNotimpl

	The method is not implemented yet.

	
seek(offset, whence)

	Changes the current file position of this file.

The file current position always applies to the IFile.read()
method. Same for the IFile.write() method it except when
the IFile.access_mode() is FileAccessMode.append_only
or FileAccessMode.append_read .

	in offset of type int

	Offset to seek relative to the position specified by @a whence.

	in whence of type FileSeekOrigin

	One of the FileSeekOrigin seek starting points.

	return new_offset of type int

	The new file offset after the seek operation.

	
set_acl(acl, mode)

	Sets the ACL of this file.

	in acl of type str

	The ACL specification string. To-be-defined.

	in mode of type int

	UNIX-style mode mask to use if @a acl is empty. As mention in
IGuestSession.directory_create() this is realized on
a best effort basis and the exact behavior depends on the Guest OS.

	raises OleErrorNotimpl

	The method is not implemented yet.

	
set_size(size)

	Changes the file size.

	in size of type int

	The new file size.

	raises OleErrorNotimpl

	The method is not implemented yet.

	
write(data, timeout_ms)

	Writes bytes to this file.

	in data of type str

	Array of bytes to write. The size of the array also specifies
how much to write.

	in timeout_ms of type int

	Timeout (in ms) to wait for the operation to complete.
Pass 0 for an infinite timeout.

	return written of type int

	How much bytes were written.

	
write_at(offset, data, timeout_ms)

	Writes bytes at a certain offset to this file.

	in offset of type int

	Offset in bytes to start writing.

	in data of type str

	Array of bytes to write. The size of the array also specifies
how much to write.

	in timeout_ms of type int

	Timeout (in ms) to wait for the operation to complete.
Pass 0 for an infinite timeout.

	return written of type int

	How much bytes were written.

	raises OleErrorNotimpl

	The method is not implemented yet.

	
class virtualbox.library.IGuestFile(interface=None)

	Implementation of the IFile object
for files in the guest.

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.IFsObjInfo(interface=None)

	Abstract parent interface for VirtualBox file system object information.
This can be information about a file or a directory, for example.

	
access_time

	Get int value for ‘accessTime’
Time of last access (st_atime).

	
allocated_size

	Get int value for ‘allocatedSize’
Disk allocation size (st_blocks * DEV_BSIZE).

	
birth_time

	Get int value for ‘birthTime’
Time of file birth (st_birthtime).

	
change_time

	Get int value for ‘changeTime’
Time of last status change (st_ctime).

	
device_number

	Get int value for ‘deviceNumber’
The device number of a character or block device type object (st_rdev).

	
file_attributes

	Get str value for ‘fileAttributes’
File attributes. Not implemented yet.

	
generation_id

	Get int value for ‘generationId’
The current generation number (st_gen).

	
gid

	Get int value for ‘GID’
The group the filesystem object is assigned (st_gid).

	
group_name

	Get str value for ‘groupName’
The group name.

	
hard_links

	Get int value for ‘hardLinks’
Number of hard links to this filesystem object (st_nlink).

	
modification_time

	Get int value for ‘modificationTime’
Time of last data modification (st_mtime).

	
name

	Get str value for ‘name’
The object’s name.

	
node_id

	Get int value for ‘nodeId’
The unique identifier (within the filesystem) of this filesystem object (st_ino).

	
node_id_device

	Get int value for ‘nodeIdDevice’
The device number of the device which this filesystem object resides on (st_dev).

	
object_size

	Get int value for ‘objectSize’
The logical size (st_size). For normal files this is the size of the file.
For symbolic links, this is the length of the path name contained in the
symbolic link. For other objects this fields needs to be specified.

	
type_p

	Get FsObjType value for ‘type’
The object type. See FsObjType for more.

	
uid

	Get int value for ‘UID’
The user owning the filesystem object (st_uid).

	
user_flags

	Get int value for ‘userFlags’
User flags (st_flags).

	
user_name

	Get str value for ‘userName’
The user name.

	
class virtualbox.library.IGuestFsObjInfo(interface=None)

	Represents the guest implementation of the
IFsObjInfo object.

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.ISnapshot(interface=None)

	The ISnapshot interface represents a snapshot of the virtual
machine.

Together with the differencing media that are created
when a snapshot is taken, a machine can be brought back to
the exact state it was in when the snapshot was taken.

The ISnapshot interface has no methods, only attributes; snapshots
are controlled through methods of the IMachine interface
which also manage the media associated with the snapshot.
The following operations exist:

IMachine.take_snapshot() creates a new snapshot
by creating new, empty differencing images for the machine’s
media and saving the VM settings and (if the VM is running)
the current VM state in the snapshot.

The differencing images will then receive all data written to
the machine’s media, while their parent (base) images
remain unmodified after the snapshot has been taken (see
IMedium for details about differencing images).
This simplifies restoring a machine to the state of a snapshot:
only the differencing images need to be deleted.

The current machine state is not changed by taking a snapshot
except that IMachine.current_snapshot() is set to
the newly created snapshot, which is also added to the machine’s
snapshots tree.

IMachine.restore_snapshot() resets a machine to
the state of a previous snapshot by deleting the differencing
image of each of the machine’s media and setting the machine’s
settings and state to the state that was saved in the snapshot (if any).

This destroys the machine’s current state. After calling this,
IMachine.current_snapshot() points to the snapshot
that was restored.

IMachine.delete_snapshot() deletes a snapshot
without affecting the current machine state.

This does not change the current machine state, but instead frees the
resources allocated when the snapshot was taken: the settings and machine
state file are deleted (if any), and the snapshot’s differencing image for
each of the machine’s media gets merged with its parent image.

Neither the current machine state nor other snapshots are affected
by this operation, except that parent media will be modified
to contain the disk data associated with the snapshot being deleted.

When deleting the current snapshot, the IMachine.current_snapshot()
attribute is set to the current snapshot’s parent or @c null if it
has no parent. Otherwise the attribute is unchanged.

Each snapshot contains a copy of virtual machine’s settings (hardware
configuration etc.). This copy is contained in an immutable (read-only)
instance of IMachine which is available from the snapshot’s
machine() attribute. When restoring the snapshot, these
settings are copied back to the original machine.

In addition, if the machine was running when the
snapshot was taken (IMachine.state() is MachineState.running),
the current VM state is saved in the snapshot (similarly to what happens
when a VM’s state is saved). The snapshot is then said to be online
because when restoring it, the VM will be running.

If the machine was in MachineState.saved saved saved,
the snapshot receives a copy of the execution state file
(IMachine.state_file_path()).

Otherwise, if the machine was not running (MachineState.powered_off
or MachineState.aborted), the snapshot is offline;
it then contains a so-called “zero execution state”, representing a
machine that is powered off.

	
id_p

	Get str value for ‘id’
UUID of the snapshot.

	
name

	Get or set str value for ‘name’
Short name of the snapshot.
Setting this attribute causes IMachine.save_settings() to
be called implicitly.

	
description

	Get or set str value for ‘description’
Optional description of the snapshot.
Setting this attribute causes IMachine.save_settings() to
be called implicitly.

	
time_stamp

	Get int value for ‘timeStamp’
Time stamp of the snapshot, in milliseconds since 1970-01-01 UTC.

	
online

	Get bool value for ‘online’
@c true if this snapshot is an online snapshot and @c false otherwise.

When this attribute is @c true, the
IMachine.state_file_path() attribute of the
machine() object associated with this snapshot
will point to the saved state file. Otherwise, it will be
an empty string.

	
machine

	Get IMachine value for ‘machine’
Virtual machine this snapshot is taken on. This object
stores all settings the machine had when taking this snapshot.

The returned machine object is immutable, i.e. no
any settings can be changed.

	
parent

	Get ISnapshot value for ‘parent’
Parent snapshot (a snapshot this one is based on), or
@c null if the snapshot has no parent (i.e. is the first snapshot).

	
children

	Get ISnapshot value for ‘children’
Child snapshots (all snapshots having this one as a parent).
By inspecting this attribute starting with a machine’s root snapshot
(which can be obtained by calling IMachine.find_snapshot()
with a @c null UUID), a machine’s snapshots tree can be iterated over.

	
get_children_count()

	Returns the number of direct children of this snapshot.

return children_count of type int

	
class virtualbox.library.IMediumAttachment(interface=None)

	The IMediumAttachment interface links storage media to virtual machines.
For each medium (IMedium) which has been attached to a
storage controller (IStorageController) of a machine
(IMachine) via the IMachine.attach_device()
method, one instance of IMediumAttachment is added to the machine’s
IMachine.medium_attachments() array attribute.

Each medium attachment specifies the storage controller as well as a
port and device number and the IMedium instance representing a virtual
hard disk or floppy or DVD image.

For removable media (DVDs or floppies), there are two additional
options. For one, the IMedium instance can be @c null to represent
an empty drive with no media inserted (see IMachine.mount_medium());
secondly, the medium can be one of the pseudo-media for host drives
listed in IHost.dvd_drives() or IHost.floppy_drives() .

Attaching Hard Disks

Hard disks are attached to virtual machines using the
IMachine.attach_device() method and detached using the
IMachine.detach_device() method. Depending on a medium’s
type (see IMedium.type_p()), hard disks are attached either
directly or indirectly.

When a hard disk is being attached directly, it is associated with the
virtual machine and used for hard disk operations when the machine is
running. When a hard disk is being attached indirectly, a new differencing
hard disk linked to it is implicitly created and this differencing hard
disk is associated with the machine and used for hard disk operations.
This also means that if IMachine.attach_device() performs
a direct attachment then the same hard disk will be returned in response
to the subsequent IMachine.get_medium() call; however if
an indirect attachment is performed then
IMachine.get_medium() will return the implicitly created
differencing hard disk, not the original one passed to IMachine.attach_device() . In detail:

Normal base hard disks that do not have children (i.e.
differencing hard disks linked to them) and that are not already
attached to virtual machines in snapshots are attached directly.
Otherwise, they are attached indirectly because having
dependent children or being part of the snapshot makes it impossible
to modify hard disk contents without breaking the integrity of the
dependent party. The IMedium.read_only() attribute allows to
quickly determine the kind of the attachment for the given hard
disk. Note that if a normal base hard disk is to be indirectly
attached to a virtual machine with snapshots then a special
procedure called smart attachment is performed (see below).
Normal differencing hard disks are like normal base hard disks:
they are attached directly if they do not have children and are
not attached to virtual machines in snapshots, and indirectly
otherwise. Note that the smart attachment procedure is never performed
for differencing hard disks.
Immutable hard disks are always attached indirectly because
they are designed to be non-writable. If an immutable hard disk is
attached to a virtual machine with snapshots then a special
procedure called smart attachment is performed (see below).
Writethrough hard disks are always attached directly,
also as designed. This also means that writethrough hard disks cannot
have other hard disks linked to them at all.
Shareable hard disks are always attached directly,
also as designed. This also means that shareable hard disks cannot
have other hard disks linked to them at all. They behave almost
like writethrough hard disks, except that shareable hard disks can
be attached to several virtual machines which are running, allowing
concurrent accesses. You need special cluster software running in
the virtual machines to make use of such disks.

Note that the same hard disk, regardless of its type, may be attached to
more than one virtual machine at a time. In this case, the machine that is
started first gains exclusive access to the hard disk and attempts to
start other machines having this hard disk attached will fail until the
first machine is powered down.

Detaching hard disks is performed in a deferred fashion. This means
that the given hard disk remains associated with the given machine after a
successful IMachine.detach_device() call until
IMachine.save_settings() is called to save all changes to
machine settings to disk. This deferring is necessary to guarantee that
the hard disk configuration may be restored at any time by a call to
IMachine.discard_settings() before the settings
are saved (committed).

Note that if IMachine.discard_settings() is called after
indirectly attaching some hard disks to the machine but before a call to
IMachine.save_settings() is made, it will implicitly delete
all differencing hard disks implicitly created by
IMachine.attach_device() for these indirect attachments.
Such implicitly created hard disks will also be immediately deleted when
detached explicitly using the IMachine.detach_device()
call if it is made before IMachine.save_settings() . This
implicit deletion is safe because newly created differencing hard
disks do not contain any user data.

However, keep in mind that detaching differencing hard disks that were
implicitly created by IMachine.attach_device()
before the last IMachine.save_settings() call will
not implicitly delete them as they may already contain some data
(for example, as a result of virtual machine execution). If these hard
disks are no more necessary, the caller can always delete them explicitly
using IMedium.delete_storage() after they are actually de-associated
from this machine by the IMachine.save_settings() call.

Smart Attachment

When normal base or immutable hard disks are indirectly attached to a
virtual machine then some additional steps are performed to make sure the
virtual machine will have the most recent “view” of the hard disk being
attached. These steps include walking through the machine’s snapshots
starting from the current one and going through ancestors up to the first
snapshot. Hard disks attached to the virtual machine in all
of the encountered snapshots are checked whether they are descendants of
the given normal base or immutable hard disk. The first found child (which
is the differencing hard disk) will be used instead of the normal base or
immutable hard disk as a parent for creating a new differencing hard disk
that will be actually attached to the machine. And only if no descendants
are found or if the virtual machine does not have any snapshots then the
normal base or immutable hard disk will be used itself as a parent for
this differencing hard disk.

It is easier to explain what smart attachment does using the
following example:

BEFORE attaching B.vdi: AFTER attaching B.vdi:

Snapshot 1 (B.vdi) Snapshot 1 (B.vdi)
Snapshot 2 (D1->B.vdi) Snapshot 2 (D1->B.vdi)
Snapshot 3 (D2->D1.vdi) Snapshot 3 (D2->D1.vdi)
Snapshot 4 (none) Snapshot 4 (none)
CurState (none) CurState (D3->D2.vdi)

NOT
...
CurState (D3->B.vdi)

The first column is the virtual machine configuration before the base hard
disk B.vdi is attached, the second column shows the machine after
this hard disk is attached. Constructs like D1->B.vdi and similar
mean that the hard disk that is actually attached to the machine is a
differencing hard disk, D1.vdi, which is linked to (based on)
another hard disk, B.vdi.

As we can see from the example, the hard disk B.vdi was detached
from the machine before taking Snapshot 4. Later, after Snapshot 4 was
taken, the user decides to attach B.vdi again. B.vdi has
dependent child hard disks (D1.vdi, D2.vdi), therefore
it cannot be attached directly and needs an indirect attachment (i.e.
implicit creation of a new differencing hard disk). Due to the smart
attachment procedure, the new differencing hard disk
(D3.vdi) will be based on D2.vdi, not on
B.vdi itself, since D2.vdi is the most recent view of
B.vdi existing for this snapshot branch of the given virtual
machine.

Note that if there is more than one descendant hard disk of the given base
hard disk found in a snapshot, and there is an exact device, channel and
bus match, then this exact match will be used. Otherwise, the youngest
descendant will be picked up.

There is one more important aspect of the smart attachment procedure which
is not related to snapshots at all. Before walking through the snapshots
as described above, the backup copy of the current list of hard disk
attachment is searched for descendants. This backup copy is created when
the hard disk configuration is changed for the first time after the last
IMachine.save_settings() call and used by
IMachine.discard_settings() to undo the recent hard disk
changes. When such a descendant is found in this backup copy, it will be
simply re-attached back, without creating a new differencing hard disk for
it. This optimization is necessary to make it possible to re-attach the
base or immutable hard disk to a different bus, channel or device slot
without losing the contents of the differencing hard disk actually
attached to the machine in place of it.

	
medium

	Get IMedium value for ‘medium’
Medium object associated with this attachment; it
can be @c null for removable devices.

	
controller

	Get str value for ‘controller’
Name of the storage controller of this attachment; this
refers to one of the controllers in IMachine.storage_controllers()
by name.

	
port

	Get int value for ‘port’
Port number of this attachment.
See IMachine.attach_device() for the meaning of this value for the different controller types.

	
device

	Get int value for ‘device’
Device slot number of this attachment.
See IMachine.attach_device() for the meaning of this value for the different controller types.

	
type_p

	Get DeviceType value for ‘type’
Device type of this attachment.

	
passthrough

	Get bool value for ‘passthrough’
Pass I/O requests through to a device on the host.

	
temporary_eject

	Get bool value for ‘temporaryEject’
Whether guest-triggered eject results in unmounting the medium.

	
is_ejected

	Get bool value for ‘isEjected’
Signals that the removable medium has been ejected. This is not
necessarily equivalent to having a @c null medium association.

	
non_rotational

	Get bool value for ‘nonRotational’
Whether the associated medium is non-rotational.

	
discard

	Get bool value for ‘discard’
Whether the associated medium supports discarding unused blocks.

	
hot_pluggable

	Get bool value for ‘hotPluggable’
Whether this attachment is hot pluggable or not.

	
bandwidth_group

	Get IBandwidthGroup value for ‘bandwidthGroup’
The bandwidth group this medium attachment is assigned to.

	
class virtualbox.library.IMedium(interface=None)

	The IMedium interface represents virtual storage for a machine’s
hard disks, CD/DVD or floppy drives. It will typically represent
a disk image on the host, for example a VDI or VMDK file representing
a virtual hard disk, or an ISO or RAW file representing virtual
removable media, but can also point to a network location (e.g.
for iSCSI targets).

Instances of IMedium are connected to virtual machines by way of medium
attachments, which link the storage medium to a particular device slot
of a storage controller of the virtual machine.
In the VirtualBox API, virtual storage is therefore always represented
by the following chain of object links:

IMachine.storage_controllers() contains an array of
storage controllers (IDE, SATA, SCSI, SAS or a floppy controller;
these are instances of IStorageController).
IMachine.medium_attachments() contains an array of
medium attachments (instances of IMediumAttachment
created by IMachine.attach_device()),
each containing a storage controller from the above array, a
port/device specification, and an instance of IMedium representing
the medium storage (image file).

For removable media, the storage medium is optional; a medium
attachment with no medium represents a CD/DVD or floppy drive
with no medium inserted. By contrast, hard disk attachments
will always have an IMedium object attached.
Each IMedium in turn points to a storage unit (such as a file
on the host computer or a network resource) that holds actual
data. This location is represented by the location()
attribute.

Existing media are opened using IVirtualBox.open_medium() ;
new hard disk media can be created with the VirtualBox API using the
IVirtualBox.create_medium() method. Differencing hard
disks (see below) are usually implicitly created by VirtualBox as
needed, but may also be created explicitly using create_diff_storage() .
VirtualBox cannot create CD/DVD or floppy images (ISO and RAW files); these
should be created with external tools and then opened from within VirtualBox.

Only for CD/DVDs and floppies, an IMedium instance can also represent a host
drive. In that case the id_p() attribute contains the UUID of
one of the drives in IHost.dvd_drives() or IHost.floppy_drives() .

Media registries

When a medium has been opened or created using one of the aforementioned
APIs, it becomes “known” to VirtualBox. Known media can be attached
to virtual machines and re-found through IVirtualBox.open_medium() .
They also appear in the global
IVirtualBox.hard_disks() ,
IVirtualBox.dvd_images() and
IVirtualBox.floppy_images() arrays.

Prior to VirtualBox 4.0, opening a medium added it to a global media registry
in the VirtualBox.xml file, which was shared between all machines and made
transporting machines and their media from one host to another difficult.

Starting with VirtualBox 4.0, media are only added to a registry when they are
attached to a machine using IMachine.attach_device() . For
backwards compatibility, which registry a medium is added to depends on which
VirtualBox version created a machine:

If the medium has first been attached to a machine which was created by
VirtualBox 4.0 or later, it is added to that machine’s media registry in
the machine XML settings file. This way all information about a machine’s
media attachments is contained in a single file and can be transported
easily.
For older media attachments (i.e. if the medium was first attached to a
machine which was created with a VirtualBox version before 4.0), media
continue to be registered in the global VirtualBox settings file, for
backwards compatibility.

See IVirtualBox.open_medium() for more information.

Media are removed from media registries by the IMedium.close() ,
delete_storage() and merge_to() methods.

Accessibility checks

VirtualBox defers media accessibility checks until the refresh_state()
method is called explicitly on a medium. This is done to make the VirtualBox object
ready for serving requests as fast as possible and let the end-user
application decide if it needs to check media accessibility right away or not.

As a result, when VirtualBox starts up (e.g. the VirtualBox
object gets created for the first time), all known media are in the
“Inaccessible” state, but the value of the last_access_error()
attribute is an empty string because no actual accessibility check has
been made yet.

After calling refresh_state() , a medium is considered
accessible if its storage unit can be read. In that case, the
state() attribute has a value of “Created”. If the storage
unit cannot be read (for example, because it is located on a disconnected
network resource, or was accidentally deleted outside VirtualBox),
the medium is considered inaccessible, which is indicated by the
“Inaccessible” state. The exact reason why the medium is inaccessible can be
obtained by reading the last_access_error() attribute.

Medium types

There are five types of medium behavior which are stored in the
type_p() attribute (see MediumType) and
which define the medium’s behavior with attachments and snapshots.

All media can be also divided in two groups: base media and
differencing media. A base medium contains all sectors of the
medium data in its own storage and therefore can be used independently.
In contrast, a differencing medium is a “delta” to some other medium and
contains only those sectors which differ from that other medium, which is
then called a parent. The differencing medium is said to be
linked to that parent. The parent may be itself a differencing
medium, thus forming a chain of linked media. The last element in that
chain must always be a base medium. Note that several differencing
media may be linked to the same parent medium.

Differencing media can be distinguished from base media by querying the
parent() attribute: base media do not have parents they would
depend on, so the value of this attribute is always @c null for them.
Using this attribute, it is possible to walk up the medium tree (from the
child medium to its parent). It is also possible to walk down the tree
using the children() attribute.

Note that the type of all differencing media is “normal”; all other
values are meaningless for them. Base media may be of any type.

Automatic composition of the file name part

Another extension to the IMedium.location() attribute is that
there is a possibility to cause VirtualBox to compose a unique value for
the file name part of the location using the UUID of the hard disk. This
applies only to hard disks in MediumState.not_created state,
e.g. before the storage unit is created, and works as follows. You set the
value of the IMedium.location() attribute to a location
specification which only contains the path specification but not the file
name part and ends with either a forward slash or a backslash character.
In response, VirtualBox will generate a new UUID for the hard disk and
compose the file name using the following pattern:

<path>/{<uuid>}.<ext>

where <path> is the supplied path specification,
<uuid> is the newly generated UUID and <ext>
is the default extension for the storage format of this hard disk. After
that, you may call any of the methods that create a new hard disk storage
unit and they will use the generated UUID and file name.

	
id_p

	Get str value for ‘id’
UUID of the medium. For a newly created medium, this value is a randomly
generated UUID.

For media in one of MediumState_NotCreated, MediumState_Creating or
MediumState_Deleting states, the value of this property is undefined
and will most likely be an empty UUID.

	
description

	Get or set str value for ‘description’
Optional description of the medium. For a newly created medium the value
of this attribute is an empty string.

Medium types that don’t support this attribute will return E_NOTIMPL in
attempt to get or set this attribute’s value.

For some storage types, reading this attribute may return an outdated
(last known) value when state() is MediumState.inaccessible or MediumState.locked_write because the value of this attribute is
stored within the storage unit itself. Also note that changing the
attribute value is not possible in such case, as well as when the
medium is the MediumState.locked_read state.

	
state

	Get MediumState value for ‘state’
Returns the current medium state, which is the last state set by
the accessibility check performed by refresh_state() .
If that method has not yet been called on the medium, the state
is “Inaccessible”; as opposed to truly inaccessible media, the
value of last_access_error() will be an empty string in
that case.

As of version 3.1, this no longer performs an accessibility check
automatically; call refresh_state() for that.

	
variant

	Get MediumVariant value for ‘variant’
Returns the storage format variant information for this medium
as an array of the flags described at MediumVariant .
Before refresh_state() is called this method returns
an undefined value.

	
location

	Get str value for ‘location’
Location of the storage unit holding medium data.

The format of the location string is medium type specific. For medium
types using regular files in a host’s file system, the location
string is the full file name.

	
name

	Get str value for ‘name’
Name of the storage unit holding medium data.

The returned string is a short version of the location()
attribute that is suitable for representing the medium in situations
where the full location specification is too long (such as lists
and comboboxes in GUI frontends). This string is also used by frontends
to sort the media list alphabetically when needed.

For example, for locations that are regular files in the host’s file
system, the value of this attribute is just the file name (+ extension),
without the path specification.

Note that as opposed to the location() attribute, the name
attribute will not necessary be unique for a list of media of the
given type and format.

	
device_type

	Get DeviceType value for ‘deviceType’
Kind of device (DVD/Floppy/HardDisk) which is applicable to this
medium.

	
host_drive

	Get bool value for ‘hostDrive’
True if this corresponds to a drive on the host.

	
size

	Get int value for ‘size’
Physical size of the storage unit used to hold medium data (in bytes).

For media whose state() is MediumState.inaccessible , the value of this property is the
last known size. For MediumState.not_created media,
the returned value is zero.

	
format_p

	Get str value for ‘format’
Storage format of this medium.

The value of this attribute is a string that specifies a backend used
to store medium data. The storage format is defined when you create a
new medium or automatically detected when you open an existing medium,
and cannot be changed later.

The list of all storage formats supported by this VirtualBox
installation can be obtained using
ISystemProperties.medium_formats() .

	
medium_format

	Get IMediumFormat value for ‘mediumFormat’
Storage medium format object corresponding to this medium.

The value of this attribute is a reference to the medium format object
that specifies the backend properties used to store medium data. The
storage format is defined when you create a new medium or automatically
detected when you open an existing medium, and cannot be changed later.

@c null is returned if there is no associated medium format
object. This can e.g. happen for medium objects representing host
drives and other special medium objects.

	
type_p

	Get or set MediumType value for ‘type’
Type (role) of this medium.

The following constraints apply when changing the value of this
attribute:

If a medium is attached to a virtual machine (either in the
current state or in one of the snapshots), its type cannot be
changed.

As long as the medium has children, its type cannot be set
to MediumType.writethrough .

The type of all differencing media is
MediumType.normal and cannot be changed.

The type of a newly created or opened medium is set to
MediumType.normal , except for DVD and floppy media,
which have a type of MediumType.writethrough .

	
allowed_types

	Get MediumType value for ‘allowedTypes’
Returns which medium types can selected for this medium.

	
parent

	Get IMedium value for ‘parent’
Parent of this medium (the medium this medium is directly based
on).

Only differencing media have parents. For base (non-differencing)
media, @c null is returned.

	
children

	Get IMedium value for ‘children’
Children of this medium (all differencing media directly based
on this medium). A @c null array is returned if this medium
does not have any children.

	
base

	Get IMedium value for ‘base’
Base medium of this medium.

If this is a differencing medium, its base medium is the medium
the given medium branch starts from. For all other types of media, this
property returns the medium object itself (i.e. the same object this
property is read on).

	
read_only

	Get bool value for ‘readOnly’
Returns @c true if this medium is read-only and @c false otherwise.

A medium is considered to be read-only when its contents cannot be
modified without breaking the integrity of other parties that depend on
this medium such as its child media or snapshots of virtual machines
where this medium is attached to these machines. If there are no
children and no such snapshots then there is no dependency and the
medium is not read-only.

The value of this attribute can be used to determine the kind of the
attachment that will take place when attaching this medium to a
virtual machine. If the value is @c false then the medium will
be attached directly. If the value is @c true then the medium
will be attached indirectly by creating a new differencing child
medium for that. See the interface description for more information.

Note that all MediumType.immutable Immutable media
are always read-only while all
MediumType.writethrough Writethrough media are
always not.

The read-only condition represented by this attribute is related to
the medium type and usage, not to the current
IMedium.state() medium state and not to the read-only
state of the storage unit.

	
logical_size

	Get int value for ‘logicalSize’
Logical size of this medium (in bytes), as reported to the
guest OS running inside the virtual machine this medium is
attached to. The logical size is defined when the medium is created
and cannot be changed later.

For media whose state is state() is MediumState.inaccessible , the value of this property is the
last known logical size. For MediumState.not_created
media, the returned value is zero.

	
auto_reset

	Get or set bool value for ‘autoReset’
Whether this differencing medium will be automatically reset each
time a virtual machine it is attached to is powered up. This
attribute is automatically set to @c true for the last
differencing image of an “immutable” medium (see
MediumType).

See reset() for more information about resetting
differencing media.

Reading this property on a base (non-differencing) medium will
always @c false. Changing the value of this property in this
case is not supported.

	
last_access_error

	Get str value for ‘lastAccessError’
Text message that represents the result of the last accessibility
check performed by refresh_state() .

An empty string is returned if the last accessibility check
was successful or has not yet been called. As a result, if
state() is “Inaccessible” and this attribute is empty,
then refresh_state() has yet to be called; this is the
default value of media after VirtualBox initialization.
A non-empty string indicates a failure and should normally describe
a reason of the failure (for example, a file read error).

	
machine_ids

	Get str value for ‘machineIds’
Array of UUIDs of all machines this medium is attached to.

A @c null array is returned if this medium is not attached to any
machine or to any machine’s snapshot.

The returned array will include a machine even if this medium is not
attached to that machine in the current state but attached to it in
one of the machine’s snapshots. See get_snapshot_ids() for
details.

	
set_ids(set_image_id, image_id, set_parent_id, parent_id)

	Changes the UUID and parent UUID for a hard disk medium.

	in set_image_id of type bool

	Select whether a new image UUID is set or not.

	in image_id of type str

	New UUID for the image. If an empty string is passed, then a new
UUID is automatically created, provided that @a setImageId is @c true.
Specifying a zero UUID is not allowed.

	in set_parent_id of type bool

	Select whether a new parent UUID is set or not.

	in parent_id of type str

	New parent UUID for the image. If an empty string is passed, then a
new UUID is automatically created, provided @a setParentId is
@c true. A zero UUID is valid.

	raises OleErrorInvalidarg

	Invalid parameter combination.

	raises VBoxErrorNotSupported

	Medium is not a hard disk medium.

	
refresh_state()

	If the current medium state (see MediumState) is one of
“Created”, “Inaccessible” or “LockedRead”, then this performs an
accessibility check on the medium and sets the value of the state()
attribute accordingly; that value is also returned for convenience.

For all other state values, this does not perform a refresh but returns
the state only.

The refresh, if performed, may take a long time (several seconds or even
minutes, depending on the storage unit location and format) because it performs an
accessibility check of the storage unit. This check may cause a significant
delay if the storage unit of the given medium is, for example, a file located
on a network share which is not currently accessible due to connectivity
problems. In that case, the call will not return until a timeout
interval defined by the host OS for this operation expires. For this reason,
it is recommended to never read this attribute on the main UI thread to avoid
making the UI unresponsive.

If the last known state of the medium is “Created” and the accessibility
check fails, then the state would be set to “Inaccessible”, and
last_access_error() may be used to get more details about the
failure. If the state of the medium is “LockedRead”, then it remains the
same, and a non-empty value of last_access_error() will
indicate a failed accessibility check in this case.

Note that not all medium states are applicable to all medium types.

	return state of type MediumState

	New medium state.

	
get_snapshot_ids(machine_id)

	Returns an array of UUIDs of all snapshots of the given machine where
this medium is attached to.

If the medium is attached to the machine in the current state, then the
first element in the array will always be the ID of the queried machine
(i.e. the value equal to the @c machineId argument), followed by
snapshot IDs (if any).

If the medium is not attached to the machine in the current state, then
the array will contain only snapshot IDs.

The returned array may be @c null if this medium is not attached
to the given machine at all, neither in the current state nor in one of
the snapshots.

	in machine_id of type str

	UUID of the machine to query.

	return snapshot_ids of type str

	Array of snapshot UUIDs of the given machine using this medium.

	
lock_read()

	Locks this medium for reading.

A read lock is shared: many clients can simultaneously lock the
same medium for reading unless it is already locked for writing (see
lock_write()) in which case an error is returned.

When the medium is locked for reading, it cannot be modified
from within VirtualBox. This means that any method that changes
the properties of this medium or contents of the storage unit
will return an error (unless explicitly stated otherwise). That
includes an attempt to start a virtual machine that wants to
write to the medium.

When the virtual machine is started up, it locks for reading all
media it uses in read-only mode. If some medium cannot be locked
for reading, the startup procedure will fail.
A medium is typically locked for reading while it is used by a running
virtual machine but has a depending differencing image that receives
the actual write operations. This way one base medium can have
multiple child differencing images which can be written to
simultaneously. Read-only media such as DVD and floppy images are
also locked for reading only (so they can be in use by multiple
machines simultaneously).

A medium is also locked for reading when it is the source of a
write operation such as clone_to() or merge_to() .

The medium locked for reading must be unlocked by abandoning the
returned token object, see IToken . Calls to
lock_read() can be nested and the lock is actually released
when all callers have abandoned the token.

This method sets the medium state (see state()) to
“LockedRead” on success. The medium’s previous state must be
one of “Created”, “Inaccessible” or “LockedRead”.

Locking an inaccessible medium is not an error; this method performs
a logical lock that prevents modifications of this medium through
the VirtualBox API, not a physical file-system lock of the underlying
storage unit.

This method returns the current state of the medium
before the operation.

	return token of type IToken

	Token object, when this is released (reference count reaches 0) then
the lock count is decreased. The lock is released when the lock count
reaches 0.

	raises VBoxErrorInvalidObjectState

	Invalid medium state (e.g. not created, locked, inaccessible,

creating, deleting).

	
lock_write()

	Locks this medium for writing.

A write lock, as opposed to lock_read() , is
exclusive: there may be only one client holding a write lock,
and there may be no read locks while the write lock is held.
As a result, read-locking fails if a write lock is held, and
write-locking fails if either a read or another write lock is held.

When a medium is locked for writing, it cannot be modified
from within VirtualBox, and it is not guaranteed that the values
of its properties are up-to-date. Any method that changes the
properties of this medium or contents of the storage unit will
return an error (unless explicitly stated otherwise).

When a virtual machine is started up, it locks for writing all
media it uses to write data to. If any medium could not be locked
for writing, the startup procedure will fail. If a medium has
differencing images, then while the machine is running, only
the last (“leaf”) differencing image is locked for writing,
whereas its parents are locked for reading only.

A medium is also locked for writing when it is the target of a
write operation such as clone_to() or merge_to() .

The medium locked for writing must be unlocked by abandoning the
returned token object, see IToken . Write locks
cannot be nested.

This method sets the medium state (see state()) to
“LockedWrite” on success. The medium’s previous state must be
either “Created” or “Inaccessible”.

Locking an inaccessible medium is not an error; this method performs
a logical lock that prevents modifications of this medium through
the VirtualBox API, not a physical file-system lock of the underlying
storage unit.

	return token of type IToken

	Token object, when this is released (reference count reaches 0) then
the lock is released.

	raises VBoxErrorInvalidObjectState

	Invalid medium state (e.g. not created, locked, inaccessible,

creating, deleting).

	
close()

	Closes this medium.

The medium must not be attached to any known virtual machine
and must not have any known child media, otherwise the
operation will fail.

When the medium is successfully closed, it is removed from
the list of registered media, but its storage unit is not
deleted. In particular, this means that this medium can
later be opened again using the IVirtualBox.open_medium()
call.

Note that after this method successfully returns, the given medium
object becomes uninitialized. This means that any attempt
to call any of its methods or attributes will fail with the
“Object not ready” (E_ACCESSDENIED) error.

	raises VBoxErrorInvalidObjectState

	Invalid medium state (other than not created, created or

inaccessible).

	raises VBoxErrorObjectInUse

	Medium attached to virtual machine.

	raises VBoxErrorFileError

	Settings file not accessible.

	raises VBoxErrorXmlError

	Could not parse the settings file.

	
get_property(name)

	Returns the value of the custom medium property with the given name.

The list of all properties supported by the given medium format can
be obtained with IMediumFormat.describe_properties() .

If this method returns an empty string in @a value, the requested
property is supported but currently not assigned any value.

	in name of type str

	Name of the property to get.

	return value of type str

	Current property value.

	raises VBoxErrorObjectNotFound

	Requested property does not exist (not supported by the format).

	raises OleErrorInvalidarg

	@a name is @c null or empty.

	
set_property(name, value)

	Sets the value of the custom medium property with the given name.

The list of all properties supported by the given medium format can
be obtained with IMediumFormat.describe_properties() .

Setting the property value to @c null or an empty string is
equivalent to deleting the existing value. A default value (if it is
defined for this property) will be used by the format backend in this
case.

	in name of type str

	Name of the property to set.

	in value of type str

	Property value to set.

	raises VBoxErrorObjectNotFound

	Requested property does not exist (not supported by the format).

	raises OleErrorInvalidarg

	@a name is @c null or empty.

	
get_properties(names)

	Returns values for a group of properties in one call.

The names of the properties to get are specified using the @a names
argument which is a list of comma-separated property names or
an empty string if all properties are to be returned.
Currently the value of this argument is ignored and the method
always returns all existing properties.

The list of all properties supported by the given medium format can
be obtained with IMediumFormat.describe_properties() .

The method returns two arrays, the array of property names corresponding
to the @a names argument and the current values of these properties.
Both arrays have the same number of elements with each element at the
given index in the first array corresponds to an element at the same
index in the second array.

For properties that do not have assigned values, an empty string is
returned at the appropriate index in the @a returnValues array.

	in names of type str

	Names of properties to get.

	out return_names of type str

	Names of returned properties.

	return return_values of type str

	Values of returned properties.

	
set_properties(names, values)

	Sets values for a group of properties in one call.

The names of the properties to set are passed in the @a names
array along with the new values for them in the @a values array. Both
arrays have the same number of elements with each element at the given
index in the first array corresponding to an element at the same index
in the second array.

If there is at least one property name in @a names that is not valid,
the method will fail before changing the values of any other properties
from the @a names array.

Using this method over set_property() is preferred if you
need to set several properties at once since it is more efficient.

The list of all properties supported by the given medium format can
be obtained with IMediumFormat.describe_properties() .

Setting the property value to @c null or an empty string is equivalent
to deleting the existing value. A default value (if it is defined for
this property) will be used by the format backend in this case.

	in names of type str

	Names of properties to set.

	in values of type str

	Values of properties to set.

	
create_base_storage(logical_size, variant)

	Starts creating a hard disk storage unit (fixed/dynamic, according
to the variant flags) in in the background. The previous storage unit
created for this object, if any, must first be deleted using
delete_storage() , otherwise the operation will fail.

Before the operation starts, the medium is placed in
MediumState.creating state. If the create operation
fails, the medium will be placed back in MediumState.not_created
state.

After the returned progress object reports that the operation has
successfully completed, the medium state will be set to MediumState.created , the medium will be remembered by this
VirtualBox installation and may be attached to virtual machines.

	in logical_size of type int

	Maximum logical size of the medium in bytes.

	in variant of type MediumVariant

	Exact image variant which should be created (as a combination of
MediumVariant flags).

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorNotSupported

	The variant of storage creation operation is not supported. See

	
delete_storage()

	Starts deleting the storage unit of this medium.

The medium must not be attached to any known virtual machine and must
not have any known child media, otherwise the operation will fail.
It will also fail if there is no storage unit to delete or if deletion
is already in progress, or if the medium is being in use (locked for
read or for write) or inaccessible. Therefore, the only valid state for
this operation to succeed is MediumState.created .

Before the operation starts, the medium is placed in
MediumState.deleting state and gets removed from the list
of remembered hard disks (media registry). If the delete operation
fails, the medium will be remembered again and placed back to
MediumState.created state.

After the returned progress object reports that the operation is
complete, the medium state will be set to
MediumState.not_created and you will be able to use one of
the storage creation methods to create it again.

close()

If the deletion operation fails, it is not guaranteed that the storage
unit still exists. You may check the IMedium.state() value
to answer this question.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorObjectInUse

	Medium is attached to a virtual machine.

	raises VBoxErrorNotSupported

	Storage deletion is not allowed because neither of storage creation

operations are supported. See

	
create_diff_storage(target, variant)

	Starts creating an empty differencing storage unit based on this
medium in the format and at the location defined by the @a target
argument.

The target medium must be in MediumState.not_created
state (i.e. must not have an existing storage unit). Upon successful
completion, this operation will set the type of the target medium to
MediumType.normal and create a storage unit necessary to
represent the differencing medium data in the given format (according
to the storage format of the target object).

After the returned progress object reports that the operation is
successfully complete, the target medium gets remembered by this
VirtualBox installation and may be attached to virtual machines.

The medium will be set to MediumState.locked_read
state for the duration of this operation.

	in target of type IMedium

	Target medium.

	in variant of type MediumVariant

	Exact image variant which should be created (as a combination of
MediumVariant flags).

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorObjectInUse

	Medium not in @c NotCreated state.

	
merge_to(target)

	Starts merging the contents of this medium and all intermediate
differencing media in the chain to the given target medium.

The target medium must be either a descendant of this medium or
its ancestor (otherwise this method will immediately return a failure).
It follows that there are two logical directions of the merge operation:
from ancestor to descendant (forward merge) and from descendant to
ancestor (backward merge). Let us consider the following medium
chain:

Base <- Diff_1 <- Diff_2

Here, calling this method on the Base medium object with
Diff_2 as an argument will be a forward merge; calling it on
Diff_2 with Base as an argument will be a backward
merge. Note that in both cases the contents of the resulting medium
will be the same, the only difference is the medium object that takes
the result of the merge operation. In case of the forward merge in the
above example, the result will be written to Diff_2; in case of
the backward merge, the result will be written to Base. In
other words, the result of the operation is always stored in the target
medium.

Upon successful operation completion, the storage units of all media in
the chain between this (source) medium and the target medium, including
the source medium itself, will be automatically deleted and the
relevant medium objects (including this medium) will become
uninitialized. This means that any attempt to call any of
their methods or attributes will fail with the
“Object not ready” (E_ACCESSDENIED) error. Applied to the above
example, the forward merge of Base to Diff_2 will
delete and uninitialize both Base and Diff_1 media.
Note that Diff_2 in this case will become a base medium
itself since it will no longer be based on any other medium.

Considering the above, all of the following conditions must be met in
order for the merge operation to succeed:

Neither this (source) medium nor any intermediate
differencing medium in the chain between it and the target
medium is attached to any virtual machine.

Neither the source medium nor the target medium is an
MediumType.immutable medium.

The part of the medium tree from the source medium to the
target medium is a linear chain, i.e. all medium in this
chain have exactly one child which is the next medium in this
chain. The only exception from this rule is the target medium in
the forward merge operation; it is allowed to have any number of
child media because the merge operation will not change its
logical contents (as it is seen by the guest OS or by children).

None of the involved media are in
MediumState.locked_read or
MediumState.locked_write state.

This (source) medium and all intermediates will be placed to MediumState.deleting state and the target medium will be
placed to MediumState.locked_write state and for the
duration of this operation.

	in target of type IMedium

	Target medium.

	return progress of type IProgress

	Progress object to track the operation completion.

	
clone_to(target, variant, parent)

	Starts creating a clone of this medium in the format and at the
location defined by the @a target argument.

The target medium must be either in MediumState.not_created
state (i.e. must not have an existing storage unit) or in
MediumState.created state (i.e. created and not locked, and
big enough to hold the data or else the copy will be partial). Upon
successful completion, the cloned medium will contain exactly the
same sector data as the medium being cloned, except that in the
first case a new UUID for the clone will be randomly generated, and in
the second case the UUID will remain unchanged.

The @a parent argument defines which medium will be the parent
of the clone. Passing a @c null reference indicates that the clone will
be a base image, i.e. completely independent. It is possible to specify
an arbitrary medium for this parameter, including the parent of the
medium which is being cloned. Even cloning to a child of the source
medium is possible. Note that when cloning to an existing image, the
@a parent argument is ignored.

After the returned progress object reports that the operation is
successfully complete, the target medium gets remembered by this
VirtualBox installation and may be attached to virtual machines.

This medium will be placed to MediumState.locked_read
state for the duration of this operation.

	in target of type IMedium

	Target medium.

	in variant of type MediumVariant

	Exact image variant which should be created (as a combination of
MediumVariant flags).

	in parent of type IMedium

	Parent of the cloned medium.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises OleErrorNotimpl

	The specified cloning variant is not supported at the moment.

	
clone_to_base(target, variant)

	Starts creating a clone of this medium in the format and at the
location defined by the @a target argument.

The target medium must be either in MediumState.not_created
state (i.e. must not have an existing storage unit) or in
MediumState.created state (i.e. created and not locked, and
big enough to hold the data or else the copy will be partial). Upon
successful completion, the cloned medium will contain exactly the
same sector data as the medium being cloned, except that in the
first case a new UUID for the clone will be randomly generated, and in
the second case the UUID will remain unchanged.

The @a parent argument defines which medium will be the parent
of the clone. In this case the clone will be a base image, i.e.
completely independent. It is possible to specify an arbitrary
medium for this parameter, including the parent of the
medium which is being cloned. Even cloning to a child of the source
medium is possible. Note that when cloning to an existing image, the
@a parent argument is ignored.

After the returned progress object reports that the operation is
successfully complete, the target medium gets remembered by this
VirtualBox installation and may be attached to virtual machines.

This medium will be placed to MediumState.locked_read
state for the duration of this operation.

	in target of type IMedium

	Target medium.

	in variant of type MediumVariant

	MediumVariant flags).

	return progress of type IProgress

	Progress object to track the operation completion.

	raises OleErrorNotimpl

	The specified cloning variant is not supported at the moment.

	
set_location(location)

	Changes the location of this medium. Some medium types may support
changing the storage unit location by simply changing the value of the
associated property. In this case the operation is performed
immediately, and @a progress is returning a @c null reference.
Otherwise on success there is a progress object returned, which
signals progress and completion of the operation. This distinction is
necessary because for some formats the operation is very fast, while
for others it can be very slow (moving the image file by copying all
data), and in the former case it’d be a waste of resources to create
a progress object which will immediately signal completion.

When setting a location for a medium which corresponds to a/several
regular file(s) in the host’s file system, the given file name may be
either relative to the IVirtualBox.home_folder() VirtualBox
home folder or absolute. Note that if the given location
specification does not contain the file extension part then a proper
default extension will be automatically appended by the implementation
depending on the medium type.

	in location of type str

	New location.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises OleErrorNotimpl

	The operation is not implemented yet.

	raises VBoxErrorNotSupported

	Medium format does not support changing the location.

	
compact()

	
	Starts compacting of this medium. This means that the medium is

	transformed into a possibly more compact storage representation.
This potentially creates temporary images, which can require a
substantial amount of additional disk space.

This medium will be placed to MediumState.locked_write
state and all its parent media (if any) will be placed to
MediumState.locked_read state for the duration of this
operation.

Please note that the results can be either returned straight away,
or later as the result of the background operation via the object
returned via the @a progress parameter.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorNotSupported

	Medium format does not support compacting (but potentially

needs it).

	
resize(logical_size)

	Starts resizing this medium. This means that the nominal size of the
medium is set to the new value. Both increasing and decreasing the
size is possible, and there are no safety checks, since VirtualBox
does not make any assumptions about the medium contents.

Resizing usually needs additional disk space, and possibly also
some temporary disk space. Note that resize does not create a full
temporary copy of the medium, so the additional disk space requirement
is usually much lower than using the clone operation.

This medium will be placed to MediumState.locked_write
state for the duration of this operation.

Please note that the results can be either returned straight away,
or later as the result of the background operation via the object
returned via the @a progress parameter.

	in logical_size of type int

	New nominal capacity of the medium in bytes.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorNotSupported

	Medium format does not support resizing.

	
reset()

	Starts erasing the contents of this differencing medium.

This operation will reset the differencing medium to its initial
state when it does not contain any sector data and any read operation is
redirected to its parent medium. This automatically gets called
during VM power-up for every medium whose auto_reset()
attribute is @c true.

The medium will be write-locked for the duration of this operation (see
lock_write()).

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorNotSupported

	This is not a differencing medium.

	raises VBoxErrorInvalidObjectState

	Medium is not in

	
change_encryption(current_password, cipher, new_password, new_password_id)

	
	Starts encryption of this medium. This means that the stored data in the

	medium is encrypted.

This medium will be placed to MediumState.locked_write
state.

Please note that the results can be either returned straight away,
or later as the result of the background operation via the object
returned via the @a progress parameter.

	in current_password of type str

	The current password the medium is protected with. Use an empty string to indicate
that the medium isn’t encrypted.

	in cipher of type str

	The cipher to use for encryption. An empty string indicates no encryption for the
result.

	in new_password of type str

	The new password the medium should be protected with. An empty password and password ID
will result in the medium being encrypted with the current password.

	in new_password_id of type str

	The ID of the new password when unlocking the medium.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorNotSupported

	Encryption is not supported for this medium because it is attached to more than one VM

or has children.

	
get_encryption_settings()

	Returns the encryption settings for this medium.

	out cipher of type str

	The cipher used for encryption.

	return password_id of type str

	The ID of the password when unlocking the medium.

	raises VBoxErrorNotSupported

	Encryption is not configured for this medium.

	
check_encryption_password(password)

	Checks whether the supplied password is correct for the medium.

	in password of type str

	The password to check.

	raises VBoxErrorNotSupported

	Encryption is not configured for this medium.

	raises VBoxErrorPasswordIncorrect

	The given password is incorrect.

	
class virtualbox.library.IMediumFormat(interface=None)

	The IMediumFormat interface represents a medium format.

Each medium format has an associated backend which is used to handle
media stored in this format. This interface provides information
about the properties of the associated backend.

Each medium format is identified by a string represented by the
id_p() attribute. This string is used in calls like
IVirtualBox.create_medium() to specify the desired
format.

The list of all supported medium formats can be obtained using
ISystemProperties.medium_formats() .

IMedium

	
id_p

	Get str value for ‘id’
Identifier of this format.

The format identifier is a non-@c null non-empty ASCII string. Note that
this string is case-insensitive. This means that, for example, all of
the following strings:

"VDI"
"vdi"
"VdI"

refer to the same medium format.

This string is used in methods of other interfaces where it is necessary
to specify a medium format, such as
IVirtualBox.create_medium() .

	
name

	Get str value for ‘name’
Human readable description of this format.

Mainly for use in file open dialogs.

	
capabilities

	Get MediumFormatCapabilities value for ‘capabilities’
Capabilities of the format as an array of the flags.

For the meaning of individual capability flags see
MediumFormatCapabilities .

	
describe_file_extensions()

	Returns two arrays describing the supported file extensions.

The first array contains the supported extensions and the seconds one
the type each extension supports. Both have the same size.

Note that some backends do not work on files, so this array may be
empty.

IMediumFormat.capabilities()

	out extensions of type str

	The array of supported extensions.

	out types of type DeviceType

	The array which indicates the device type for every given extension.

	
describe_properties()

	Returns several arrays describing the properties supported by this
format.

An element with the given index in each array describes one
property. Thus, the number of elements in each returned array is the
same and corresponds to the number of supported properties.

The returned arrays are filled in only if the
MediumFormatCapabilities.properties flag is set.
All arguments must be non-@c null.

DataType , DataFlags

	out names of type str

	Array of property names.

	out descriptions of type str

	Array of property descriptions.

	out types of type DataType

	Array of property types.

	out flags of type int

	Array of property flags.

	out defaults of type str

	Array of default property values.

	
class virtualbox.library.IToken(interface=None)

	The IToken interface represents a token passed to an API client, which
triggers cleanup actions when it is explicitly released by calling the
abandon() method (preferred, as it is accurately defined
when the release happens), or when the object reference count drops
to 0. The latter way is implicitly used when an API client crashes,
however the discovery that there was a crash can take rather long,
depending on the platform (COM needs 6 minutes). So better don’t rely
on the crash behavior too much.

	
abandon()

	Releases this token. Cannot be undone in any way, and makes the
token object unusable (even the dummy() method will return
an error), ready for releasing. It is a more defined way than just
letting the reference count drop to 0, because the latter (depending
on the platform) can trigger asynchronous cleanup activity.

	
dummy()

	Purely a NOOP. Useful when using proxy type API bindings (e.g. the
webservice) which manage objects on behalf of the actual client, using
an object reference expiration time based garbage collector.

	
class virtualbox.library.IMousePointerShape(interface=None)

	The guest mouse pointer description.

	
visible

	Get bool value for ‘visible’
Flag whether the pointer is visible.

	
alpha

	Get bool value for ‘alpha’
Flag whether the pointer has an alpha channel.

	
hot_x

	Get int value for ‘hotX’
The pointer hot spot X coordinate.

	
hot_y

	Get int value for ‘hotY’
The pointer hot spot Y coordinate.

	
width

	Get int value for ‘width’
Width of the pointer shape in pixels.

	
height

	Get int value for ‘height’
Height of the pointer shape in pixels.

	
shape

	Get str value for ‘shape’
Shape bitmaps.

The @a shape buffer contains a 1bpp (bits per pixel) AND mask
followed by a 32bpp XOR (color) mask.

For pointers without alpha channel the XOR mask pixels are
32 bit values: (lsb)BGR0(msb). For pointers with alpha channel
the XOR mask consists of (lsb)BGRA(msb) 32 bit values.

An AND mask is provided for pointers with alpha channel, so if the
client does not support alpha, the pointer could be
displayed as a normal color pointer.

The AND mask is a 1bpp bitmap with byte aligned scanlines. The
size of the AND mask therefore is cbAnd = (width + 7) / 8 *
height. The padding bits at the end of each scanline are
undefined.

The XOR mask follows the AND mask on the next 4-byte aligned
offset: uint8_t *pu8Xor = pu8And + (cbAnd + 3) & ~3.
Bytes in the gap between the AND and the XOR mask are undefined.
The XOR mask scanlines have no gap between them and the size of
the XOR mask is: cbXor = width * 4 * height.

If @a shape size is 0, then the shape is not known or did not change.
This can happen if only the pointer visibility is changed.

	
class virtualbox.library.IDisplaySourceBitmap(interface=None)

	Information about the screen bitmap.

	
screen_id

	Get int value for ‘screenId’

	
query_bitmap_info()

	Information about the screen bitmap.

out address of type str

out width of type int

out height of type int

out bits_per_pixel of type int

out bytes_per_line of type int

out bitmap_format of type BitmapFormat

	
class virtualbox.library.IFramebuffer(interface=None)

	Frame buffer width, in pixels.

	
width

	Get int value for ‘width’
Frame buffer width, in pixels.

	
height

	Get int value for ‘height’
Frame buffer height, in pixels.

	
bits_per_pixel

	Get int value for ‘bitsPerPixel’
Color depth, in bits per pixel.

	
bytes_per_line

	Get int value for ‘bytesPerLine’
Scan line size, in bytes.

	
pixel_format

	Get BitmapFormat value for ‘pixelFormat’
Frame buffer pixel format. It’s one of the values defined by BitmapFormat .

This attribute must never (and will never) return BitmapFormat.opaque – the format of the frame
buffer must be always known.

	
height_reduction

	Get int value for ‘heightReduction’
Hint from the frame buffer about how much of the standard
screen height it wants to use for itself. This information is
exposed to the guest through the VESA BIOS and VMMDev interface
so that it can use it for determining its video mode table. It
is not guaranteed that the guest respects the value.

	
overlay

	Get IFramebufferOverlay value for ‘overlay’
An alpha-blended overlay which is superposed over the frame buffer.
The initial purpose is to allow the display of icons providing
information about the VM state, including disk activity, in front
ends which do not have other means of doing that. The overlay is
designed to controlled exclusively by IDisplay. It has no locking
of its own, and any changes made to it are not guaranteed to be
visible until the affected portion of IFramebuffer is updated. The
overlay can be created lazily the first time it is requested. This
attribute can also return @c null to signal that the overlay is not
implemented.

	
win_id

	Get int value for ‘winId’
Platform-dependent identifier of the window where context of this
frame buffer is drawn, or zero if there’s no such window.

	
capabilities

	Get FramebufferCapabilities value for ‘capabilities’
Capabilities of the framebuffer instance.

For the meaning of individual capability flags see
FramebufferCapabilities .

	
notify_update(x, y, width, height)

	Informs about an update.
Gets called by the display object where this buffer is
registered.

in x of type int

in y of type int

in width of type int

in height of type int

	
notify_update_image(x, y, width, height, image)

	Informs about an update and provides 32bpp bitmap.

in x of type int

in y of type int

in width of type int

in height of type int

	in image of type str

	Array with 32BPP image data.

	
notify_change(screen_id, x_origin, y_origin, width, height)

	Requests a size change.

	in screen_id of type int

	Logical guest screen number.

	in x_origin of type int

	Location of the screen in the guest.

	in y_origin of type int

	Location of the screen in the guest.

	in width of type int

	Width of the guest display, in pixels.

	in height of type int

	Height of the guest display, in pixels.

	
video_mode_supported(width, height, bpp)

	Returns whether the frame buffer implementation is willing to
support a given video mode. In case it is not able to render
the video mode (or for some reason not willing), it should
return @c false. Usually this method is called when the guest
asks the VMM device whether a given video mode is supported
so the information returned is directly exposed to the guest.
It is important that this method returns very quickly.

in width of type int

in height of type int

in bpp of type int

return supported of type bool

	
get_visible_region(rectangles, count)

	Returns the visible region of this frame buffer.

If the @a rectangles parameter is @c null then the value of the
@a count parameter is ignored and the number of elements necessary to
describe the current visible region is returned in @a countCopied.

If @a rectangles is not @c null but @a count is less
than the required number of elements to store region data, the method
will report a failure. If @a count is equal or greater than the
required number of elements, then the actual number of elements copied
to the provided array will be returned in @a countCopied.

The address of the provided array must be in the process space of
this IFramebuffer object.

Method not yet implemented.

	in rectangles of type str

	Pointer to the @c RTRECT array to receive region data.

	in count of type int

	Number of @c RTRECT elements in the @a rectangles array.

	return count_copied of type int

	Number of elements copied to the @a rectangles array.

	
set_visible_region(rectangles, count)

	Suggests a new visible region to this frame buffer. This region
represents the area of the VM display which is a union of regions of
all top-level windows of the guest operating system running inside the
VM (if the Guest Additions for this system support this
functionality). This information may be used by the frontends to
implement the seamless desktop integration feature.

The address of the provided array must be in the process space of
this IFramebuffer object.

The IFramebuffer implementation must make a copy of the provided
array of rectangles.

Method not yet implemented.

	in rectangles of type str

	Pointer to the @c RTRECT array.

	in count of type int

	Number of @c RTRECT elements in the @a rectangles array.

	
process_vhwa_command(command)

	Posts a Video HW Acceleration Command to the frame buffer for processing.
The commands used for 2D video acceleration (DDraw surface creation/destroying, blitting, scaling, color conversion, overlaying, etc.)
are posted from quest to the host to be processed by the host hardware.

The address of the provided command must be in the process space of
this IFramebuffer object.

	in command of type str

	Pointer to VBOXVHWACMD containing the command to execute.

	
notify3_d_event(type_p, data)

	Notifies framebuffer about 3D backend event.

	in type_p of type int

	event type. Currently only VBOX3D_NOTIFY_EVENT_TYPE_VISIBLE_3DDATA is supported.

	in data of type str

	event-specific data, depends on the supplied event type

	
class virtualbox.library.IFramebufferOverlay(interface=None)

	The IFramebufferOverlay interface represents an alpha blended overlay
for displaying status icons above an IFramebuffer. It is always created
not visible, so that it must be explicitly shown. It only covers a
portion of the IFramebuffer, determined by its width, height and
co-ordinates. It is always in packed pixel little-endian 32bit ARGB (in
that order) format, and may be written to directly. Do re-read the
width though, after setting it, as it may be adjusted (increased) to
make it more suitable for the front end.

	
x

	Get int value for ‘x’
X position of the overlay, relative to the frame buffer.

	
y

	Get int value for ‘y’
Y position of the overlay, relative to the frame buffer.

	
visible

	Get or set bool value for ‘visible’
Whether the overlay is currently visible.

	
alpha

	Get or set int value for ‘alpha’
The global alpha value for the overlay. This may or may not be
supported by a given front end.

	
move(x, y)

	Changes the overlay’s position relative to the IFramebuffer.

in x of type int

in y of type int

	
class virtualbox.library.IDisplay(interface=None)

	The IDisplay interface represents the virtual machine’s display.

The object implementing this interface is contained in each
IConsole.display() attribute and represents the visual
output of the virtual machine.

The virtual display supports pluggable output targets represented by the
IFramebuffer interface. Examples of the output target are a window on
the host computer or an RDP session’s display on a remote computer.

	
guest_screen_layout

	Get IGuestScreenInfo value for ‘guestScreenLayout’
Layout of the guest screens.

	
get_screen_resolution(screen_id)

	Queries certain attributes such as display width, height, color depth
and the X and Y origin for a given guest screen.

The parameters @a xOrigin and @a yOrigin return the X and Y
coordinates of the framebuffer’s origin.

All return parameters are optional.

in screen_id of type int

out width of type int

out height of type int

out bits_per_pixel of type int

out x_origin of type int

out y_origin of type int

out guest_monitor_status of type GuestMonitorStatus

	
attach_framebuffer(screen_id, framebuffer)

	Sets the graphics update target for a screen.

in screen_id of type int

in framebuffer of type IFramebuffer

return id_p of type str

	
detach_framebuffer(screen_id, id_p)

	Removes the graphics updates target for a screen.

in screen_id of type int

in id_p of type str

	
query_framebuffer(screen_id)

	Queries the graphics updates targets for a screen.

in screen_id of type int

return framebuffer of type IFramebuffer

	
set_video_mode_hint(display, enabled, change_origin, origin_x, origin_y, width, height, bits_per_pixel)

	Asks VirtualBox to request the given video mode from
the guest. This is just a hint and it cannot be guaranteed
that the requested resolution will be used. Guest Additions
are required for the request to be seen by guests. The caller
should issue the request and wait for a resolution change and
after a timeout retry.

Specifying @c 0 for either @a width, @a height or @a bitsPerPixel
parameters means that the corresponding values should be taken from the
current video mode (i.e. left unchanged).

If the guest OS supports multi-monitor configuration then the @a display
parameter specifies the number of the guest display to send the hint to:
@c 0 is the primary display, @c 1 is the first secondary and
so on. If the multi-monitor configuration is not supported, @a display
must be @c 0.

	in display of type int

	The number of the guest display to send the hint to.

	in enabled of type bool

	@c True, if this guest screen is enabled,
@c False otherwise.

	in change_origin of type bool

	@c True, if the origin of the guest screen should be changed,
@c False otherwise.

	in origin_x of type int

	The X origin of the guest screen.

	in origin_y of type int

	The Y origin of the guest screen.

	in width of type int

	The width of the guest screen.

	in height of type int

	The height of the guest screen.

	in bits_per_pixel of type int

	The number of bits per pixel of the guest screen.

	raises OleErrorInvalidarg

	The @a display is not associated with any monitor.

	
set_seamless_mode(enabled)

	Enables or disables seamless guest display rendering (seamless desktop
integration) mode.

Calling this method has no effect if IGuest.get_facility_status() with facility @c Seamless
does not return @c Active.

in enabled of type bool

	
take_screen_shot(screen_id, address, width, height, bitmap_format)

	Takes a screen shot of the requested size and format and copies it to the
buffer allocated by the caller and pointed to by @a address.
The buffer size must be enough for a 32 bits per pixel bitmap,
i.e. width * height * 4 bytes.

This API can be used only locally by a VM process through the
COM/XPCOM C++ API as it requires pointer support. It is not
available for scripting languages, Java or any webservice clients.
Unless you are writing a new VM frontend use
take_screen_shot_to_array() .

in screen_id of type int

in address of type str

in width of type int

in height of type int

in bitmap_format of type BitmapFormat

	
take_screen_shot_to_array(screen_id, width, height, bitmap_format)

	Takes a guest screen shot of the requested size and format
and returns it as an array of bytes.

	in screen_id of type int

	The guest monitor to take screenshot from.

	in width of type int

	Desired image width.

	in height of type int

	Desired image height.

	in bitmap_format of type BitmapFormat

	The requested format.

	return screen_data of type str

	Array with resulting screen data.

	
draw_to_screen(screen_id, address, x, y, width, height)

	Draws a 32-bpp image of the specified size from the given buffer
to the given point on the VM display.

	in screen_id of type int

	Monitor to take the screenshot from.

	in address of type str

	Address to store the screenshot to

	in x of type int

	Relative to the screen top left corner.

	in y of type int

	Relative to the screen top left corner.

	in width of type int

	Desired image width.

	in height of type int

	Desired image height.

	raises OleErrorNotimpl

	Feature not implemented.

	raises VBoxErrorIprtError

	Could not draw to screen.

	
invalidate_and_update()

	Does a full invalidation of the VM display and instructs the VM
to update it.

	raises VBoxErrorIprtError

	Could not invalidate and update screen.

	
invalidate_and_update_screen(screen_id)

	Redraw the specified VM screen.

	in screen_id of type int

	The guest screen to redraw.

	
complete_vhwa_command(command)

	Signals that the Video HW Acceleration command has completed.

	in command of type str

	Pointer to VBOXVHWACMD containing the completed command.

	
viewport_changed(screen_id, x, y, width, height)

	Signals that framebuffer window viewport has changed.

	in screen_id of type int

	Monitor to take the screenshot from.

	in x of type int

	Framebuffer x offset.

	in y of type int

	Framebuffer y offset.

	in width of type int

	Viewport width.

	in height of type int

	Viewport height.

	raises OleErrorInvalidarg

	The specified viewport data is invalid.

	
query_source_bitmap(screen_id)

	Obtains the guest screen bitmap parameters.

in screen_id of type int

out display_source_bitmap of type IDisplaySourceBitmap

	
notify_scale_factor_change(screen_id, u32_scale_factor_w_multiplied, u32_scale_factor_h_multiplied)

	Notify OpenGL HGCM host service about graphics content scaling factor change.

in screen_id of type int

in u32_scale_factor_w_multiplied of type int

in u32_scale_factor_h_multiplied of type int

	
notify_hi_dpi_output_policy_change(f_unscaled_hi_dpi)

	Notify OpenGL HGCM host service about HiDPI monitor scaling policy change.

in f_unscaled_hi_dpi of type bool

	
set_screen_layout(screen_layout_mode, guest_screen_info)

	Set video modes for the guest screens.

in screen_layout_mode of type ScreenLayoutMode

in guest_screen_info of type IGuestScreenInfo

	
class virtualbox.library.INetworkAdapter(interface=None)

	Represents a virtual network adapter that is attached to a virtual machine.
Each virtual machine has a fixed number of network adapter slots with one
instance of this attached to each of them. Call
IMachine.get_network_adapter() to get the network adapter that
is attached to a given slot in a given machine.

Each network adapter can be in one of five attachment modes, which are
represented by the NetworkAttachmentType enumeration;
see the attachment_type() attribute.

	
adapter_type

	Get or set NetworkAdapterType value for ‘adapterType’
Type of the virtual network adapter. Depending on this value,
VirtualBox will provide a different virtual network hardware
to the guest.

	
slot

	Get int value for ‘slot’
Slot number this adapter is plugged into. Corresponds to
the value you pass to IMachine.get_network_adapter()
to obtain this instance.

	
enabled

	Get or set bool value for ‘enabled’
Flag whether the network adapter is present in the
guest system. If disabled, the virtual guest hardware will
not contain this network adapter. Can only be changed when
the VM is not running.

	
mac_address

	Get or set str value for ‘MACAddress’
Ethernet MAC address of the adapter, 12 hexadecimal characters. When
setting it to @c null or an empty string for an enabled adapter,
VirtualBox will generate a unique MAC address. Disabled adapters can
have an empty MAC address.

	
attachment_type

	Get or set NetworkAttachmentType value for ‘attachmentType’
Sets/Gets network attachment type of this network adapter.

	
bridged_interface

	Get or set str value for ‘bridgedInterface’
Name of the network interface the VM should be bridged to.

	
host_only_interface

	Get or set str value for ‘hostOnlyInterface’
Name of the host only network interface the VM is attached to.

	
internal_network

	Get or set str value for ‘internalNetwork’
Name of the internal network the VM is attached to.

	
nat_network

	Get or set str value for ‘NATNetwork’
Name of the NAT network the VM is attached to.

	
generic_driver

	Get or set str value for ‘genericDriver’
Name of the driver to use for the “Generic” network attachment type.

	
cable_connected

	Get or set bool value for ‘cableConnected’
Flag whether the adapter reports the cable as connected or not.
It can be used to report offline situations to a VM.

	
line_speed

	Get or set int value for ‘lineSpeed’
Line speed reported by custom drivers, in units of 1 kbps.

	
promisc_mode_policy

	Get or set NetworkAdapterPromiscModePolicy value for ‘promiscModePolicy’
The promiscuous mode policy of the network adapter when attached to an
internal network, host only network or a bridge.

	
trace_enabled

	Get or set bool value for ‘traceEnabled’
Flag whether network traffic from/to the network card should be traced.
Can only be toggled when the VM is turned off.

	
trace_file

	Get or set str value for ‘traceFile’
Filename where a network trace will be stored. If not set, VBox-pid.pcap
will be used.

	
nat_engine

	Get INATEngine value for ‘NATEngine’
Points to the NAT engine which handles the network address translation
for this interface. This is active only when the interface actually uses
NAT.

	
boot_priority

	Get or set int value for ‘bootPriority’
Network boot priority of the adapter. Priority 1 is highest. If not set,
the priority is considered to be at the lowest possible setting.

	
bandwidth_group

	Get or set IBandwidthGroup value for ‘bandwidthGroup’
The bandwidth group this network adapter is assigned to.

	
get_property(key)

	Returns the value of the network attachment property with the given name.

If the requested data @a key does not exist, this function will
succeed and return an empty string in the @a value argument.

	in key of type str

	Name of the property to get.

	return value of type str

	Current property value.

	raises OleErrorInvalidarg

	@a name is @c null or empty.

	
set_property(key, value)

	Sets the value of the network attachment property with the given name.

Setting the property value to @c null or an empty string is equivalent
to deleting the existing value.

	in key of type str

	Name of the property to set.

	in value of type str

	Property value to set.

	raises OleErrorInvalidarg

	@a name is @c null or empty.

	
get_properties(names)

	Returns values for a group of properties in one call.

The names of the properties to get are specified using the @a names
argument which is a list of comma-separated property names or
an empty string if all properties are to be returned.
Currently the value of this argument is ignored and the method
always returns all existing properties.

The method returns two arrays, the array of property names corresponding
to the @a names argument and the current values of these properties.
Both arrays have the same number of elements with each element at the
given index in the first array corresponds to an element at the same
index in the second array.

	in names of type str

	Names of properties to get.

	out return_names of type str

	Names of returned properties.

	return return_values of type str

	Values of returned properties.

	
class virtualbox.library.ISerialPort(interface=None)

	The ISerialPort interface represents the virtual serial port device.

The virtual serial port device acts like an ordinary serial port
inside the virtual machine. This device communicates to the real
serial port hardware in one of two modes: host pipe or host device.

In host pipe mode, the #path attribute specifies the path to the pipe on
the host computer that represents a serial port. The #server attribute
determines if this pipe is created by the virtual machine process at
machine startup or it must already exist before starting machine
execution.

In host device mode, the #path attribute specifies the name of the
serial port device on the host computer.

There is also a third communication mode: the disconnected mode. In this
mode, the guest OS running inside the virtual machine will be able to
detect the serial port, but all port write operations will be discarded
and all port read operations will return no data.

IMachine.get_serial_port()

	
slot

	Get int value for ‘slot’
Slot number this serial port is plugged into. Corresponds to
the value you pass to IMachine.get_serial_port()
to obtain this instance.

	
enabled

	Get or set bool value for ‘enabled’
Flag whether the serial port is enabled. If disabled,
the serial port will not be reported to the guest OS.

	
io_base

	Get or set int value for ‘IOBase’
Base I/O address of the serial port.

	
irq

	Get or set int value for ‘IRQ’
IRQ number of the serial port.

	
host_mode

	Get or set PortMode value for ‘hostMode’
How is this port connected to the host.

Changing this attribute may fail if the conditions for
path() are not met.

	
server

	Get or set bool value for ‘server’
Flag whether this serial port acts as a server (creates a new pipe on
the host) or as a client (uses the existing pipe). This attribute is
used only when host_mode() is PortMode_HostPipe or PortMode_TCP.

	
path

	Get or set str value for ‘path’
Path to the serial port’s pipe on the host when ISerialPort.host_mode() is
PortMode_HostPipe, the host serial device name when
ISerialPort.host_mode() is PortMode_HostDevice or the TCP
port (server) or hostname:port (client) when
ISerialPort.host_mode() is PortMode_TCP.
For those cases, setting a @c null or empty string as the attribute’s
value is an error. Otherwise, the value of this property is ignored.

	
class virtualbox.library.IParallelPort(interface=None)

	The IParallelPort interface represents the virtual parallel port device.

The virtual parallel port device acts like an ordinary parallel port
inside the virtual machine. This device communicates to the real
parallel port hardware using the name of the parallel device on the host
computer specified in the #path attribute.

Each virtual parallel port device is assigned a base I/O address and an
IRQ number that will be reported to the guest operating system and used
to operate the given parallel port from within the virtual machine.

IMachine.get_parallel_port()

	
slot

	Get int value for ‘slot’
Slot number this parallel port is plugged into. Corresponds to
the value you pass to IMachine.get_parallel_port()
to obtain this instance.

	
enabled

	Get or set bool value for ‘enabled’
Flag whether the parallel port is enabled. If disabled,
the parallel port will not be reported to the guest OS.

	
io_base

	Get or set int value for ‘IOBase’
Base I/O address of the parallel port.

	
irq

	Get or set int value for ‘IRQ’
IRQ number of the parallel port.

	
path

	Get or set str value for ‘path’
Host parallel device name. If this parallel port is enabled, setting a
@c null or an empty string as this attribute’s value will result in
the parallel port behaving as if not connected to any device.

	
class virtualbox.library.IMachineDebugger(interface=None)

	Takes a core dump of the guest.

See include/VBox/dbgfcorefmt.h for details on the file format.

	
dump_guest_core(filename, compression)

	Takes a core dump of the guest.

See include/VBox/dbgfcorefmt.h for details on the file format.

	in filename of type str

	The name of the output file. The file must not exist.

	in compression of type str

	Reserved for future compression method indicator.

	
dump_host_process_core(filename, compression)

	Takes a core dump of the VM process on the host.

This feature is not implemented in the 4.0.0 release but it may show up
in a dot release.

	in filename of type str

	The name of the output file. The file must not exist.

	in compression of type str

	Reserved for future compression method indicator.

	
info(name, args)

	Interfaces with the info dumpers (DBGFInfo).

This feature is not implemented in the 4.0.0 release but it may show up
in a dot release.

	in name of type str

	The name of the info item.

	in args of type str

	Arguments to the info dumper.

	return info of type str

	The into string.

	
inject_nmi()

	Inject an NMI into a running VT-x/AMD-V VM.

	
modify_log_groups(settings)

	Modifies the group settings of the debug or release logger.

	in settings of type str

	The group settings string. See iprt/log.h for details. To target the
release logger, prefix the string with “release:”.

	
modify_log_flags(settings)

	Modifies the debug or release logger flags.

	in settings of type str

	The flags settings string. See iprt/log.h for details. To target the
release logger, prefix the string with “release:”.

	
modify_log_destinations(settings)

	Modifies the debug or release logger destinations.

	in settings of type str

	The destination settings string. See iprt/log.h for details. To target the
release logger, prefix the string with “release:”.

	
read_physical_memory(address, size)

	Reads guest physical memory, no side effects (MMIO++).

This feature is not implemented in the 4.0.0 release but may show up
in a dot release.

	in address of type int

	The guest physical address.

	in size of type int

	The number of bytes to read.

	return bytes_p of type str

	The bytes read.

	
write_physical_memory(address, size, bytes_p)

	Writes guest physical memory, access handles (MMIO++) are ignored.

This feature is not implemented in the 4.0.0 release but may show up
in a dot release.

	in address of type int

	The guest physical address.

	in size of type int

	The number of bytes to read.

	in bytes_p of type str

	The bytes to write.

	
read_virtual_memory(cpu_id, address, size)

	Reads guest virtual memory, no side effects (MMIO++).

This feature is not implemented in the 4.0.0 release but may show up
in a dot release.

	in cpu_id of type int

	The identifier of the Virtual CPU.

	in address of type int

	The guest virtual address.

	in size of type int

	The number of bytes to read.

	return bytes_p of type str

	The bytes read.

	
write_virtual_memory(cpu_id, address, size, bytes_p)

	Writes guest virtual memory, access handles (MMIO++) are ignored.

This feature is not implemented in the 4.0.0 release but may show up
in a dot release.

	in cpu_id of type int

	The identifier of the Virtual CPU.

	in address of type int

	The guest virtual address.

	in size of type int

	The number of bytes to read.

	in bytes_p of type str

	The bytes to write.

	
load_plug_in(name)

	Loads a DBGF plug-in.

	in name of type str

	The plug-in name or DLL. Special name ‘all’ loads all installed plug-ins.

	return plug_in_name of type str

	The name of the loaded plug-in.

	
unload_plug_in(name)

	Unloads a DBGF plug-in.

	in name of type str

	The plug-in name or DLL. Special name ‘all’ unloads all plug-ins.

	
detect_os()

	Tries to (re-)detect the guest OS kernel.

This feature is not implemented in the 4.0.0 release but may show up
in a dot release.

	return os of type str

	The detected OS kernel on success.

	
query_os_kernel_log(max_messages)

	Tries to get the kernel log (dmesg) of the guest OS.

	in max_messages of type int

	Max number of messages to return, counting from the end of the
log. If 0, there is no limit.

	return dmesg of type str

	The kernel log.

	
get_register(cpu_id, name)

	Gets one register.

	in cpu_id of type int

	The identifier of the Virtual CPU.

	in name of type str

	The register name, case is ignored.

	return value of type str

	The register value. This is usually a hex value (always 0x prefixed)
but other format may be used for floating point registers (TBD).

	
get_registers(cpu_id)

	Gets all the registers for the given CPU.

	in cpu_id of type int

	The identifier of the Virtual CPU.

	out names of type str

	Array containing the lowercase register names.

	out values of type str

	Array parallel to the names holding the register values as if the
register was returned by IMachineDebugger.get_register() .

	
set_register(cpu_id, name, value)

	Gets one register.

This feature is not implemented in the 4.0.0 release but may show up
in a dot release.

	in cpu_id of type int

	The identifier of the Virtual CPU.

	in name of type str

	The register name, case is ignored.

	in value of type str

	The new register value. Hexadecimal, decimal and octal formattings
are supported in addition to any special formattings returned by
the getters.

	
set_registers(cpu_id, names, values)

	Sets zero or more registers atomically.

This feature is not implemented in the 4.0.0 release but may show up
in a dot release.

	in cpu_id of type int

	The identifier of the Virtual CPU.

	in names of type str

	Array containing the register names, case ignored.

	in values of type str

	Array paralell to the names holding the register values. See
IMachineDebugger.set_register() for formatting
guidelines.

	
dump_guest_stack(cpu_id)

	Produce a simple stack dump using the current guest state.

This feature is not implemented in the 4.0.0 release but may show up
in a dot release.

	in cpu_id of type int

	The identifier of the Virtual CPU.

	return stack of type str

	String containing the formatted stack dump.

	
reset_stats(pattern)

	Reset VM statistics.

	in pattern of type str

	The selection pattern. A bit similar to filename globbing.

	
dump_stats(pattern)

	Dumps VM statistics.

	in pattern of type str

	The selection pattern. A bit similar to filename globbing.

	
get_stats(pattern, with_descriptions)

	Get the VM statistics in a XMLish format.

	in pattern of type str

	The selection pattern. A bit similar to filename globbing.

	in with_descriptions of type bool

	Whether to include the descriptions.

	return stats of type str

	The XML document containing the statistics.

	
single_step

	Get or set bool value for ‘singleStep’
Switch for enabling single-stepping.

	
recompile_user

	Get or set bool value for ‘recompileUser’
Switch for forcing code recompilation for user mode code.

	
recompile_supervisor

	Get or set bool value for ‘recompileSupervisor’
Switch for forcing code recompilation for supervisor mode code.

	
execute_all_in_iem

	Get or set bool value for ‘executeAllInIEM’
Whether to execute all the code in the instruction interpreter. This
is mainly for testing the interpreter and not an execution mode
intended for general consumption.

	
patm_enabled

	Get or set bool value for ‘PATMEnabled’
Switch for enabling and disabling the PATM component.

	
csam_enabled

	Get or set bool value for ‘CSAMEnabled’
Switch for enabling and disabling the CSAM component.

	
log_enabled

	Get or set bool value for ‘logEnabled’
Switch for enabling and disabling the debug logger.

	
log_dbg_flags

	Get str value for ‘logDbgFlags’
The debug logger flags.

	
log_dbg_groups

	Get str value for ‘logDbgGroups’
The debug logger’s group settings.

	
log_dbg_destinations

	Get str value for ‘logDbgDestinations’
The debug logger’s destination settings.

	
log_rel_flags

	Get str value for ‘logRelFlags’
The release logger flags.

	
log_rel_groups

	Get str value for ‘logRelGroups’
The release logger’s group settings.

	
log_rel_destinations

	Get str value for ‘logRelDestinations’
The relase logger’s destination settings.

	
hw_virt_ex_enabled

	Get bool value for ‘HWVirtExEnabled’
Flag indicating whether the VM is currently making use of CPU hardware
virtualization extensions.

	
hw_virt_ex_nested_paging_enabled

	Get bool value for ‘HWVirtExNestedPagingEnabled’
Flag indicating whether the VM is currently making use of the nested paging
CPU hardware virtualization extension.

	
hw_virt_ex_vpid_enabled

	Get bool value for ‘HWVirtExVPIDEnabled’
Flag indicating whether the VM is currently making use of the VPID
VT-x extension.

	
hw_virt_ex_ux_enabled

	Get bool value for ‘HWVirtExUXEnabled’
Flag indicating whether the VM is currently making use of the
unrestricted execution feature of VT-x.

	
os_name

	Get str value for ‘OSName’
Query the guest OS kernel name as detected by the DBGF.

This feature is not implemented in the 4.0.0 release but may show up
in a dot release.

	
os_version

	Get str value for ‘OSVersion’
Query the guest OS kernel version string as detected by the DBGF.

This feature is not implemented in the 4.0.0 release but may show up
in a dot release.

	
pae_enabled

	Get bool value for ‘PAEEnabled’
Flag indicating whether the VM is currently making use of the Physical
Address Extension CPU feature.

	
virtual_time_rate

	Get or set int value for ‘virtualTimeRate’
The rate at which the virtual time runs expressed as a percentage.
The accepted range is 2% to 20000%.

	
vm

	Get int value for ‘VM’
Gets the user-mode VM handle, with a reference. Must be passed to
VMR3ReleaseUVM when done. This is only for internal use while we carve
the details of this interface.

	
uptime

	Get int value for ‘uptime’
VM uptime in milliseconds, i.e. time in which it could have been
executing guest code. Excludes the time when the VM was paused.

	
class virtualbox.library.IUSBDeviceFilters(interface=None)

	List of USB device filters associated with the machine.

If the machine is currently running, these filters are activated
every time a new (supported) USB device is attached to the host
computer that was not ignored by global filters
(IHost.usb_device_filters()).

These filters are also activated when the machine is powered up.
They are run against a list of all currently available USB
devices (in states
USBDeviceState.available ,
USBDeviceState.busy ,
USBDeviceState.held) that were not previously
ignored by global filters.

If at least one filter matches the USB device in question, this
device is automatically captured (attached to) the virtual USB
controller of this machine.

IUSBDeviceFilter , IUSBController

	
device_filters

	Get IUSBDeviceFilter value for ‘deviceFilters’
List of USB device filters associated with the machine.

If the machine is currently running, these filters are activated
every time a new (supported) USB device is attached to the host
computer that was not ignored by global filters
(IHost.usb_device_filters()).

These filters are also activated when the machine is powered up.
They are run against a list of all currently available USB
devices (in states
USBDeviceState.available ,
USBDeviceState.busy ,
USBDeviceState.held) that were not previously
ignored by global filters.

If at least one filter matches the USB device in question, this
device is automatically captured (attached to) the virtual USB
controller of this machine.

IUSBDeviceFilter , IUSBController

	
create_device_filter(name)

	Creates a new USB device filter. All attributes except
the filter name are set to empty (any match),
active is @c false (the filter is not active).

The created filter can then be added to the list of filters using
insert_device_filter() .

device_filters()

	in name of type str

	Filter name. See IUSBDeviceFilter.name()
for more info.

	return filter_p of type IUSBDeviceFilter

	Created filter object.

	raises VBoxErrorInvalidVmState

	The virtual machine is not mutable.

	
insert_device_filter(position, filter_p)

	Inserts the given USB device to the specified position
in the list of filters.

Positions are numbered starting from 0. If the specified
position is equal to or greater than the number of elements in
the list, the filter is added to the end of the collection.

Duplicates are not allowed, so an attempt to insert a
filter that is already in the collection, will return an
error.

device_filters()

	in position of type int

	Position to insert the filter to.

	in filter_p of type IUSBDeviceFilter

	USB device filter to insert.

	raises VBoxErrorInvalidVmState

	Virtual machine is not mutable.

	raises OleErrorInvalidarg

	USB device filter not created within this VirtualBox instance.

	raises VBoxErrorInvalidObjectState

	USB device filter already in list.

	
remove_device_filter(position)

	Removes a USB device filter from the specified position in the
list of filters.

Positions are numbered starting from 0. Specifying a
position equal to or greater than the number of elements in
the list will produce an error.

device_filters()

	in position of type int

	Position to remove the filter from.

	return filter_p of type IUSBDeviceFilter

	Removed USB device filter.

	raises VBoxErrorInvalidVmState

	Virtual machine is not mutable.

	raises OleErrorInvalidarg

	USB device filter list empty or invalid @a position.

	
class virtualbox.library.IUSBController(interface=None)

	The USB Controller name.

	
name

	Get or set str value for ‘name’
The USB Controller name.

	
type_p

	Get or set USBControllerType value for ‘type’
The USB Controller type.

	
usb_standard

	Get int value for ‘USBStandard’
USB standard version which the controller implements.
This is a BCD which means that the major version is in the
high byte and minor version is in the low byte.

	
class virtualbox.library.IUSBDevice(interface=None)

	The IUSBDevice interface represents a virtual USB device attached to the
virtual machine.

A collection of objects implementing this interface is stored in the
IConsole.usb_devices() attribute which lists all USB devices
attached to a running virtual machine’s USB controller.

	
id_p

	Get str value for ‘id’
Unique USB device ID. This ID is built from #vendorId,
#productId, #revision and #serialNumber.

	
vendor_id

	Get int value for ‘vendorId’
Vendor ID.

	
product_id

	Get int value for ‘productId’
Product ID.

	
revision

	Get int value for ‘revision’
Product revision number. This is a packed BCD represented as
unsigned short. The high byte is the integer part and the low
byte is the decimal.

	
manufacturer

	Get str value for ‘manufacturer’
Manufacturer string.

	
product

	Get str value for ‘product’
Product string.

	
serial_number

	Get str value for ‘serialNumber’
Serial number string.

	
address

	Get str value for ‘address’
Host specific address of the device.

	
port

	Get int value for ‘port’
Host USB port number the device is physically
connected to.

	
version

	Get int value for ‘version’
The major USB version of the device - 1, 2 or 3.

	
port_version

	Get int value for ‘portVersion’
The major USB version of the host USB port the device is
physically connected to - 1, 2 or 3. For devices not connected to
anything this will have the same value as the version attribute.

	
speed

	Get USBConnectionSpeed value for ‘speed’
The speed at which the device is currently communicating.

	
remote

	Get bool value for ‘remote’
Whether the device is physically connected to a remote VRDE
client or to a local host machine.

	
device_info

	Get str value for ‘deviceInfo’
Array of device attributes as single strings.

So far the following are used:
0: The manufacturer string, if the device doesn’t expose the ID one is taken
from an internal database or an empty string if none is found.
1: The product string, if the device doesn’t expose the ID one is taken
from an internal database or an empty string if none is found.

	
backend

	Get str value for ‘backend’
The backend which will be used to communicate with this device.

	
class virtualbox.library.IUSBDeviceFilter(interface=None)

	The IUSBDeviceFilter interface represents an USB device filter used
to perform actions on a group of USB devices.

This type of filters is used by running virtual machines to
automatically capture selected USB devices once they are physically
attached to the host computer.

A USB device is matched to the given device filter if and only if all
attributes of the device match the corresponding attributes of the
filter (that is, attributes are joined together using the logical AND
operation). On the other hand, all together, filters in the list of
filters carry the semantics of the logical OR operation. So if it is
desirable to create a match like “this vendor id OR this product id”,
one needs to create two filters and specify “any match” (see below)
for unused attributes.

All filter attributes used for matching are strings. Each string
is an expression representing a set of values of the corresponding
device attribute, that will match the given filter. Currently, the
following filtering expressions are supported:

Interval filters. Used to specify valid intervals for
integer device attributes (Vendor ID, Product ID and Revision).
The format of the string is:

int:((m)|([m]-[n]))(,(m)|([m]-[n]))*

where m and n are integer numbers, either in octal
(starting from 0), hexadecimal (starting from 0x)
or decimal (otherwise) form, so that m < n. If m
is omitted before a dash (-), the minimum possible integer
is assumed; if n is omitted after a dash, the maximum
possible integer is assumed.

Boolean filters. Used to specify acceptable values for
boolean device attributes. The format of the string is:

true|false|yes|no|0|1

Exact match. Used to specify a single value for the given
device attribute. Any string that doesn’t start with int:
represents the exact match. String device attributes are compared to
this string including case of symbols. Integer attributes are first
converted to a string (see individual filter attributes) and then
compared ignoring case.

Any match. Any value of the corresponding device attribute
will match the given filter. An empty or @c null string is
used to construct this type of filtering expressions.

On the Windows host platform, interval filters are not currently
available. Also all string filter attributes
(manufacturer() , product() ,
serial_number()) are ignored, so they behave as
any match no matter what string expression is specified.

IUSBDeviceFilters.device_filters() ,
IHostUSBDeviceFilter

	
name

	Get or set str value for ‘name’
Visible name for this filter.
This name is used to visually distinguish one filter from another,
so it can neither be @c null nor an empty string.

	
active

	Get or set bool value for ‘active’
Whether this filter active or has been temporarily disabled.

	
vendor_id

	Get or set str value for ‘vendorId’
IUSBDevice.vendor_id() Vendor ID filter.
The string representation for the exact matching
has the form XXXX, where X is the hex digit
(including leading zeroes).

	
product_id

	Get or set str value for ‘productId’
IUSBDevice.product_id() Product ID filter.
The string representation for the exact matching
has the form XXXX, where X is the hex digit
(including leading zeroes).

	
revision

	Get or set str value for ‘revision’
IUSBDevice.product_id() Product revision number
filter. The string representation for the exact matching
has the form IIFF, where I is the decimal digit
of the integer part of the revision, and F is the
decimal digit of its fractional part (including leading and
trailing zeros).
Note that for interval filters, it’s best to use the hexadecimal
form, because the revision is stored as a 16 bit packed BCD value;
so the expression int:0x0100-0x0199 will match any
revision from 1.0 to 1.99.

	
manufacturer

	Get or set str value for ‘manufacturer’
IUSBDevice.manufacturer() Manufacturer filter.

	
product

	Get or set str value for ‘product’
IUSBDevice.product() Product filter.

	
serial_number

	Get or set str value for ‘serialNumber’
IUSBDevice.serial_number() Serial number filter.

	
port

	Get or set str value for ‘port’
IUSBDevice.port() Host USB port filter.

	
remote

	Get or set str value for ‘remote’
IUSBDevice.remote() Remote state filter.

This filter makes sense only for machine USB filters,
i.e. it is ignored by IHostUSBDeviceFilter objects.

	
masked_interfaces

	Get or set int value for ‘maskedInterfaces’
This is an advanced option for hiding one or more USB interfaces
from the guest. The value is a bit mask where the bits that are set
means the corresponding USB interface should be hidden, masked off
if you like.
This feature only works on Linux hosts.

	
class virtualbox.library.IHostUSBDevice(interface=None)

	The IHostUSBDevice interface represents a physical USB device attached
to the host computer.

Besides properties inherited from IUSBDevice, this interface adds the
state() property that holds the current state of the USB
device.

IHost.usb_devices() ,
IHost.usb_device_filters()

	
state

	Get USBDeviceState value for ‘state’
Current state of the device.

	
class virtualbox.library.IHostUSBDeviceFilter(interface=None)

	The IHostUSBDeviceFilter interface represents a global filter for a
physical USB device used by the host computer. Used indirectly in
IHost.usb_device_filters() .

Using filters of this type, the host computer determines the initial
state of the USB device after it is physically attached to the
host’s USB controller.

The IUSBDeviceFilter.remote() attribute is ignored by this type of
filters, because it makes sense only for
IUSBDeviceFilters.device_filters() machine USB filters.

IHost.usb_device_filters()

	
action

	Get or set USBDeviceFilterAction value for ‘action’
Action performed by the host when an attached USB device
matches this filter.

	
class virtualbox.library.IUSBProxyBackend(interface=None)

	The USBProxyBackend interface represents a source for USB devices available
to the host for attaching to the VM.

	
name

	Get str value for ‘name’
The unique name of the proxy backend.

	
type_p

	Get str value for ‘type’
The type of the backend.

	
class virtualbox.library.IAudioAdapter(interface=None)

	The IAudioAdapter interface represents the virtual audio adapter of
the virtual machine. Used in IMachine.audio_adapter() .

	
enabled

	Get or set bool value for ‘enabled’
Flag whether the audio adapter is present in the
guest system. If disabled, the virtual guest hardware will
not contain any audio adapter. Can only be changed when
the VM is not running.

	
enabled_in

	Get or set bool value for ‘enabledIn’
Flag whether the audio adapter is enabled for audio
input. Only relevant if the adapter is enabled.

	
enabled_out

	Get or set bool value for ‘enabledOut’
Flag whether the audio adapter is enabled for audio
output. Only relevant if the adapter is enabled.

	
audio_controller

	Get or set AudioControllerType value for ‘audioController’
The emulated audio controller.

	
audio_codec

	Get or set AudioCodecType value for ‘audioCodec’
The exact variant of audio codec hardware presented
to the guest.
For HDA and SB16, only one variant is available, but for AC‘97,
there are several.

	
audio_driver

	Get or set AudioDriverType value for ‘audioDriver’
Audio driver the adapter is connected to. This setting
can only be changed when the VM is not running.

	
properties_list

	Get str value for ‘propertiesList’
Array of names of tunable properties, which can be supported by audio driver.

	
set_property(key, value)

	Sets an audio specific property string.

If you pass @c null or empty string as a key @a value, the given @a key
will be deleted.

	in key of type str

	Name of the key to set.

	in value of type str

	Value to assign to the key.

	
get_property(key)

	Returns an audio specific property string.

If the requested data @a key does not exist, this function will
succeed and return an empty string in the @a value argument.

	in key of type str

	Name of the key to get.

	return value of type str

	Value of the requested key.

	
class virtualbox.library.IVRDEServer(interface=None)

	Flag if VRDE server is enabled.

	
enabled

	Get or set bool value for ‘enabled’
Flag if VRDE server is enabled.

	
auth_type

	Get or set AuthType value for ‘authType’
VRDE authentication method.

	
auth_timeout

	Get or set int value for ‘authTimeout’
Timeout for guest authentication. Milliseconds.

	
allow_multi_connection

	Get or set bool value for ‘allowMultiConnection’
Flag whether multiple simultaneous connections to the VM are permitted.
Note that this will be replaced by a more powerful mechanism in the future.

	
reuse_single_connection

	Get or set bool value for ‘reuseSingleConnection’
Flag whether the existing connection must be dropped and a new connection
must be established by the VRDE server, when a new client connects in single
connection mode.

	
vrde_ext_pack

	Get or set str value for ‘VRDEExtPack’
The name of Extension Pack providing VRDE for this VM. Overrides
ISystemProperties.default_vrde_ext_pack() .

	
auth_library

	Get or set str value for ‘authLibrary’
Library used for authentication of RDP clients by this VM. Overrides
ISystemProperties.vrde_auth_library() .

	
vrde_properties

	Get str value for ‘VRDEProperties’
Array of names of properties, which are supported by this VRDE server.

	
set_vrde_property(key, value)

	Sets a VRDE specific property string.

If you pass @c null or empty string as a key @a value, the given @a key
will be deleted.

	in key of type str

	Name of the key to set.

	in value of type str

	Value to assign to the key.

	
get_vrde_property(key)

	Returns a VRDE specific property string.

If the requested data @a key does not exist, this function will
succeed and return an empty string in the @a value argument.

	in key of type str

	Name of the key to get.

	return value of type str

	Value of the requested key.

	
class virtualbox.library.ISharedFolder(interface=None)

	The ISharedFolder interface represents a folder in the host computer’s
file system accessible from the guest OS running inside a virtual
machine using an associated logical name.

There are three types of shared folders:

Global (IVirtualBox.shared_folders()), shared
folders available to all virtual machines.
Permanent (IMachine.shared_folders()),
VM-specific shared folders available to the given virtual machine at
startup.
Transient (IConsole.shared_folders()),
VM-specific shared folders created in the session context (for
example, when the virtual machine is running) and automatically
discarded when the session is closed (the VM is powered off).

Logical names of shared folders must be unique within the given scope
(global, permanent or transient). However, they do not need to be unique
across scopes. In this case, the definition of the shared folder in a
more specific scope takes precedence over definitions in all other
scopes. The order of precedence is (more specific to more general):

Transient definitions
Permanent definitions
Global definitions

For example, if MyMachine has a shared folder named
C_DRIVE (that points to C:), then creating a
transient shared folder named C_DRIVE (that points
to C:\WINDOWS) will change the definition
of C_DRIVE in the guest OS so
that \VBOXSVRC_DRIVE will give access
to C:WINDOWS instead of C:on the host
PC. Removing the transient shared folder C_DRIVE will restore
the previous (permanent) definition of C_DRIVE that points
to C:if it still exists.

Note that permanent and transient shared folders of different machines
are in different name spaces, so they don’t overlap and don’t need to
have unique logical names.

Global shared folders are not implemented in the current version of the
product.

	
name

	Get str value for ‘name’
Logical name of the shared folder.

	
host_path

	Get str value for ‘hostPath’
Full path to the shared folder in the host file system.

	
accessible

	Get bool value for ‘accessible’
Whether the folder defined by the host path is currently
accessible or not.
For example, the folder can be inaccessible if it is placed
on the network share that is not available by the time
this property is read.

	
writable

	Get bool value for ‘writable’
Whether the folder defined by the host path is writable or
not.

	
auto_mount

	Get bool value for ‘autoMount’
Whether the folder gets automatically mounted by the guest or not.

	
last_access_error

	Get str value for ‘lastAccessError’
Text message that represents the result of the last accessibility
check.

Accessibility checks are performed each time the accessible()
attribute is read. An empty string is returned if the last
accessibility check was successful. A non-empty string indicates a
failure and should normally describe a reason of the failure (for
example, a file read error).

	
class virtualbox.library.IInternalSessionControl(interface=None)

	PID of the process that has created this Session object.

	
pid

	Get int value for ‘PID’
PID of the process that has created this Session object.

	
remote_console

	Get IConsole value for ‘remoteConsole’
Returns the console object suitable for remote control.

	
nominal_state

	Get MachineState value for ‘nominalState’
Returns suitable machine state for the VM execution state. Useful
for choosing a sensible machine state after a complex operation which
failed or otherwise resulted in an unclear situation.

	
assign_machine(machine, lock_type, token)

	Assigns the machine object associated with this direct-type
session or informs the session that it will be a remote one
(if @a machine == @c null).

in machine of type IMachine

in lock_type of type LockType

in token of type IToken

	raises VBoxErrorInvalidVmState

	Session state prevents operation.

	raises VBoxErrorInvalidObjectState

	Session type prevents operation.

	
assign_remote_machine(machine, console)

	Assigns the machine and the (remote) console object associated with
this remote-type session.

in machine of type IMachine

in console of type IConsole

	raises VBoxErrorInvalidVmState

	Session state prevents operation.

	
update_machine_state(machine_state)

	Updates the machine state in the VM process.
Must be called only in certain cases
(see the method implementation).

in machine_state of type MachineState

	raises VBoxErrorInvalidVmState

	Session state prevents operation.

	raises VBoxErrorInvalidObjectState

	Session type prevents operation.

	
uninitialize()

	Uninitializes (closes) this session. Used by VirtualBox to close
the corresponding remote session when the direct session dies
or gets closed.

	raises VBoxErrorInvalidVmState

	Session state prevents operation.

	
on_network_adapter_change(network_adapter, change_adapter)

	Triggered when settings of a network adapter of the
associated virtual machine have changed.

in network_adapter of type INetworkAdapter

in change_adapter of type bool

	raises VBoxErrorInvalidVmState

	Session state prevents operation.

	raises VBoxErrorInvalidObjectState

	Session type prevents operation.

	
on_serial_port_change(serial_port)

	Triggered when settings of a serial port of the
associated virtual machine have changed.

in serial_port of type ISerialPort

	raises VBoxErrorInvalidVmState

	Session state prevents operation.

	raises VBoxErrorInvalidObjectState

	Session type prevents operation.

	
on_parallel_port_change(parallel_port)

	Triggered when settings of a parallel port of the
associated virtual machine have changed.

in parallel_port of type IParallelPort

	raises VBoxErrorInvalidVmState

	Session state prevents operation.

	raises VBoxErrorInvalidObjectState

	Session type prevents operation.

	
on_storage_controller_change()

	Triggered when settings of a storage controller of the
associated virtual machine have changed.

	raises VBoxErrorInvalidVmState

	Session state prevents operation.

	raises VBoxErrorInvalidObjectState

	Session type prevents operation.

	
on_medium_change(medium_attachment, force)

	Triggered when attached media of the
associated virtual machine have changed.

	in medium_attachment of type IMediumAttachment

	The medium attachment which changed.

	in force of type bool

	If the medium change was forced.

	raises VBoxErrorInvalidVmState

	Session state prevents operation.

	raises VBoxErrorInvalidObjectState

	Session type prevents operation.

	
on_storage_device_change(medium_attachment, remove, silent)

	Triggered when attached storage devices of the
associated virtual machine have changed.

	in medium_attachment of type IMediumAttachment

	The medium attachment which changed.

	in remove of type bool

	TRUE if the device is removed, FALSE if it was added.

	in silent of type bool

	TRUE if the device is is silently reconfigured without
notifying the guest about it.

	raises VBoxErrorInvalidVmState

	Session state prevents operation.

	raises VBoxErrorInvalidObjectState

	Session type prevents operation.

	
on_clipboard_mode_change(clipboard_mode)

	Notification when the shared clipboard mode changes.

	in clipboard_mode of type ClipboardMode

	The new shared clipboard mode.

	
on_dn_d_mode_change(dnd_mode)

	Notification when the drag’n drop mode changes.

	in dnd_mode of type DnDMode

	The new mode for drag’n drop.

	
on_cpu_change(cpu, add)

	Notification when a CPU changes.

	in cpu of type int

	The CPU which changed

	in add of type bool

	Flag whether the CPU was added or removed

	
on_cpu_execution_cap_change(execution_cap)

	Notification when the CPU execution cap changes.

	in execution_cap of type int

	The new CPU execution cap value. (1-100)

	
on_vrde_server_change(restart)

	Triggered when settings of the VRDE server object of the
associated virtual machine have changed.

	in restart of type bool

	Flag whether the server must be restarted

	raises VBoxErrorInvalidVmState

	Session state prevents operation.

	raises VBoxErrorInvalidObjectState

	Session type prevents operation.

	
on_video_capture_change()

	Triggered when video capture settings have changed.

	
on_usb_controller_change()

	Triggered when settings of the USB controller object of the
associated virtual machine have changed.

	raises VBoxErrorInvalidVmState

	Session state prevents operation.

	raises VBoxErrorInvalidObjectState

	Session type prevents operation.

	
on_shared_folder_change(global_p)

	Triggered when a permanent (global or machine) shared folder has been
created or removed.

We don’t pass shared folder parameters in this notification because
the order in which parallel notifications are delivered is not defined,
therefore it could happen that these parameters were outdated by the
time of processing this notification.

in global_p of type bool

	raises VBoxErrorInvalidVmState

	Session state prevents operation.

	raises VBoxErrorInvalidObjectState

	Session type prevents operation.

	
on_usb_device_attach(device, error, masked_interfaces, capture_filename)

	Triggered when a request to capture a USB device (as a result
of matched USB filters or direct call to
IConsole.attach_usb_device()) has completed.
A @c null @a error object means success, otherwise it
describes a failure.

in device of type IUSBDevice

in error of type IVirtualBoxErrorInfo

in masked_interfaces of type int

in capture_filename of type str

	raises VBoxErrorInvalidVmState

	Session state prevents operation.

	raises VBoxErrorInvalidObjectState

	Session type prevents operation.

	
on_usb_device_detach(id_p, error)

	Triggered when a request to release the USB device (as a result
of machine termination or direct call to
IConsole.detach_usb_device()) has completed.
A @c null @a error object means success, otherwise it
describes a failure.

in id_p of type str

in error of type IVirtualBoxErrorInfo

	raises VBoxErrorInvalidVmState

	Session state prevents operation.

	raises VBoxErrorInvalidObjectState

	Session type prevents operation.

	
on_show_window(check)

	Called by IMachine.can_show_console_window() and by
IMachine.show_console_window() in order to notify
console listeners
ICanShowWindowEvent
and IShowWindowEvent .

in check of type bool

out can_show of type bool

out win_id of type int

	raises VBoxErrorInvalidObjectState

	Session type prevents operation.

	
on_bandwidth_group_change(bandwidth_group)

	Notification when one of the bandwidth groups change.

	in bandwidth_group of type IBandwidthGroup

	The bandwidth group which changed.

	
access_guest_property(name, value, flags, access_mode)

	Called by IMachine.get_guest_property() and by
IMachine.set_guest_property() in order to read and
modify guest properties.

in name of type str

in value of type str

in flags of type str

	in access_mode of type int

	0 = get, 1 = set, 2 = delete.

out ret_value of type str

out ret_timestamp of type int

out ret_flags of type str

	raises VBoxErrorInvalidVmState

	Machine session is not open.

	raises VBoxErrorInvalidObjectState

	Session type is not direct.

	
enumerate_guest_properties(patterns)

	Return a list of the guest properties matching a set of patterns along
with their values, time stamps and flags.

	in patterns of type str

	The patterns to match the properties against as a comma-separated
string. If this is empty, all properties currently set will be
returned.

	out keys of type str

	The key names of the properties returned.

	out values of type str

	The values of the properties returned. The array entries match the
corresponding entries in the @a key array.

	out timestamps of type int

	The time stamps of the properties returned. The array entries match
the corresponding entries in the @a key array.

	out flags of type str

	The flags of the properties returned. The array entries match the
corresponding entries in the @a key array.

	raises VBoxErrorInvalidVmState

	Machine session is not open.

	raises VBoxErrorInvalidObjectState

	Session type is not direct.

	
online_merge_medium(medium_attachment, source_idx, target_idx, progress)

	Triggers online merging of a hard disk. Used internally when deleting
a snapshot while a VM referring to the same hard disk chain is running.

	in medium_attachment of type IMediumAttachment

	The medium attachment to identify the medium chain.

	in source_idx of type int

	The index of the source image in the chain.
Redundant, but drastically reduces IPC.

	in target_idx of type int

	The index of the target image in the chain.
Redundant, but drastically reduces IPC.

	in progress of type IProgress

	Progress object for this operation.

	raises VBoxErrorInvalidVmState

	Machine session is not open.

	raises VBoxErrorInvalidObjectState

	Session type is not direct.

	
reconfigure_medium_attachments(attachments)

	Reconfigure all specified medium attachments in one go, making sure
the current state corresponds to the specified medium.

	in attachments of type IMediumAttachment

	Array containing the medium attachments which need to be
reconfigured.

	raises VBoxErrorInvalidVmState

	Machine session is not open.

	raises VBoxErrorInvalidObjectState

	Session type is not direct.

	
enable_vmm_statistics(enable)

	Enables or disables collection of VMM RAM statistics.

	in enable of type bool

	True enables statistics collection.

	raises VBoxErrorInvalidVmState

	Machine session is not open.

	raises VBoxErrorInvalidObjectState

	Session type is not direct.

	
pause_with_reason(reason)

	Internal method for triggering a VM pause with a specified reason code.
The reason code can be interpreted by device/drivers and thus it might
behave slightly differently than a normal VM pause.

IConsole.pause()

	in reason of type Reason

	Specify the best matching reason code please.

	raises VBoxErrorInvalidVmState

	Virtual machine not in Running state.

	raises VBoxErrorVmError

	Virtual machine error in suspend operation.

	
resume_with_reason(reason)

	Internal method for triggering a VM resume with a specified reason code.
The reason code can be interpreted by device/drivers and thus it might
behave slightly differently than a normal VM resume.

IConsole.resume()

	in reason of type Reason

	Specify the best matching reason code please.

	raises VBoxErrorInvalidVmState

	Virtual machine not in Paused state.

	raises VBoxErrorVmError

	Virtual machine error in resume operation.

	
save_state_with_reason(reason, progress, state_file_path, pause_vm)

	Internal method for triggering a VM save state with a specified reason
code. The reason code can be interpreted by device/drivers and thus it
might behave slightly differently than a normal VM save state.

This call is fully synchronous, and the caller is expected to have set
the machine state appropriately (and has to set the follow-up machine
state if this call failed).

IMachine.save_state()

	in reason of type Reason

	Specify the best matching reason code please.

	in progress of type IProgress

	Progress object to track the operation completion.

	in state_file_path of type str

	File path the VM process must save the execution state to.

	in pause_vm of type bool

	The VM should be paused before saving state. It is automatically
unpaused on error in the “vanilla save state” case.

	return left_paused of type bool

	Returns if the VM was left in paused state, which is necessary
in many situations (snapshots, teleportation).

	raises VBoxErrorInvalidVmState

	Virtual machine state is not one of the expected values.

	raises VBoxErrorFileError

	Failed to create directory for saved state file.

	
cancel_save_state_with_reason()

	Internal method for cancelling a VM save state.
IInternalSessionControl.save_state_with_reason()

	
class virtualbox.library.IStorageController(interface=None)

	Represents a storage controller that is attached to a virtual machine
(IMachine). Just as drives (hard disks, DVDs, FDs) are
attached to storage controllers in a real computer, virtual drives
(represented by IMediumAttachment) are attached to virtual
storage controllers, represented by this interface.

As opposed to physical hardware, VirtualBox has a very generic concept
of a storage controller, and for purposes of the Main API, all virtual
storage is attached to virtual machines via instances of this interface.
There are five types of such virtual storage controllers: IDE, SCSI, SATA,
SAS and Floppy (see bus()). Depending on which of these four
is used, certain sub-types may be available and can be selected in
controller_type() .

Depending on these settings, the guest operating system might see
significantly different virtual hardware.

	
name

	Get or set str value for ‘name’
Name of the storage controller, as originally specified with
IMachine.add_storage_controller() . This then uniquely
identifies this controller with other method calls such as
IMachine.attach_device() and IMachine.mount_medium() .

	
max_devices_per_port_count

	Get int value for ‘maxDevicesPerPortCount’
Maximum number of devices which can be attached to one port.

	
min_port_count

	Get int value for ‘minPortCount’
Minimum number of ports that IStorageController.port_count() can be set to.

	
max_port_count

	Get int value for ‘maxPortCount’
Maximum number of ports that IStorageController.port_count() can be set to.

	
instance

	Get or set int value for ‘instance’
The instance number of the device in the running VM.

	
port_count

	Get or set int value for ‘portCount’
The number of currently usable ports on the controller.
The minimum and maximum number of ports for one controller are
stored in IStorageController.min_port_count()
and IStorageController.max_port_count() .

	
bus

	Get StorageBus value for ‘bus’
The bus type of the storage controller (IDE, SATA, SCSI, SAS or Floppy).

	
controller_type

	Get or set StorageControllerType value for ‘controllerType’
The exact variant of storage controller hardware presented
to the guest.
Depending on this value, VirtualBox will provide a different
virtual storage controller hardware to the guest.
For SATA, SAS and floppy controllers, only one variant is
available, but for IDE and SCSI, there are several.

For SCSI controllers, the default type is LsiLogic.

	
use_host_io_cache

	Get or set bool value for ‘useHostIOCache’
If true, the storage controller emulation will use a dedicated I/O thread, enable the host I/O
caches and use synchronous file APIs on the host. This was the only option in the API before
VirtualBox 3.2 and is still the default for IDE controllers.

If false, the host I/O cache will be disabled for image files attached to this storage controller.
Instead, the storage controller emulation will use asynchronous I/O APIs on the host. This makes
it possible to turn off the host I/O caches because the emulation can handle unaligned access to
the file. This should be used on OS X and Linux hosts if a high I/O load is expected or many
virtual machines are running at the same time to prevent I/O cache related hangs.
This option new with the API of VirtualBox 3.2 and is now the default for non-IDE storage controllers.

	
bootable

	Get bool value for ‘bootable’
Returns whether it is possible to boot from disks attached to this controller.

	
class virtualbox.library.IPerformanceMetric(interface=None)

	The IPerformanceMetric interface represents parameters of the given
performance metric.

	
metric_name

	Get str value for ‘metricName’
Name of the metric.

	
object_p

	Get Interface value for ‘object’
Object this metric belongs to.

	
description

	Get str value for ‘description’
Textual description of the metric.

	
period

	Get int value for ‘period’
Time interval between samples, measured in seconds.

	
count

	Get int value for ‘count’
Number of recent samples retained by the performance collector for this
metric.

When the collected sample count exceeds this number, older samples
are discarded.

	
unit

	Get str value for ‘unit’
Unit of measurement.

	
minimum_value

	Get int value for ‘minimumValue’
Minimum possible value of this metric.

	
maximum_value

	Get int value for ‘maximumValue’
Maximum possible value of this metric.

	
class virtualbox.library.IPerformanceCollector(interface=None)

	The IPerformanceCollector interface represents a service that collects
and stores performance metrics data.

Performance metrics are associated with objects of interfaces like IHost
and IMachine. Each object has a distinct set of performance metrics. The
set can be obtained with IPerformanceCollector.get_metrics() .

Metric data is collected at the specified intervals and is retained
internally. The interval and the number of retained samples can be set
with IPerformanceCollector.setup_metrics() . Both metric data
and collection settings are not persistent, they are discarded as soon as
VBoxSVC process terminates. Moreover, metric settings and data associated
with a particular VM only exist while VM is running. They disappear as
soon as VM shuts down. It is not possible to set up metrics for machines
that are powered off. One needs to start VM first, then set up metric
collection parameters.

Metrics are organized hierarchically, with each level separated by a
slash (/) character. Generally, the scheme for metric names is like this:

Category/Metric[/SubMetric][:aggregation]

“Category/Metric” together form the base metric name. A base metric is
the smallest unit for which a sampling interval and the number of
retained samples can be set. Only base metrics can be enabled and
disabled. All sub-metrics are collected when their base metric is
collected. Collected values for any set of sub-metrics can be queried
with IPerformanceCollector.query_metrics_data() .

For example “CPU/Load/User:avg” metric name stands for the “CPU”
category, “Load” metric, “User” submetric, “average” aggregate. An
aggregate function is computed over all retained data. Valid aggregate
functions are:

avg – average
min – minimum
max – maximum

When setting up metric parameters, querying metric data, enabling or
disabling metrics wildcards can be used in metric names to specify a
subset of metrics. For example, to select all CPU-related metrics
use CPU/*, all averages can be queried using *:avg and
so on. To query metric values without aggregates *: can be used.

The valid names for base metrics are:

CPU/Load
CPU/MHz
RAM/Usage
RAM/VMM

The general sequence for collecting and retrieving the metrics is:

Obtain an instance of IPerformanceCollector with
IVirtualBox.performance_collector()

Allocate and populate an array with references to objects the metrics
will be collected for. Use references to IHost and IMachine objects.

Allocate and populate an array with base metric names the data will
be collected for.

Call IPerformanceCollector.setup_metrics() . From now on
the metric data will be collected and stored.

Wait for the data to get collected.

Allocate and populate an array with references to objects the metric
values will be queried for. You can re-use the object array used for
setting base metrics.

Allocate and populate an array with metric names the data will be
collected for. Note that metric names differ from base metric names.

Call IPerformanceCollector.query_metrics_data() . The data
that have been collected so far are returned. Note that the values
are still retained internally and data collection continues.

For an example of usage refer to the following files in VirtualBox SDK:

Java: bindings/webservice/java/jax-ws/samples/metrictest.java

Python: bindings/xpcom/python/sample/shellcommon.py

	
metric_names

	Get str value for ‘metricNames’
Array of unique names of metrics.

This array represents all metrics supported by the performance
collector. Individual objects do not necessarily support all of them.
IPerformanceCollector.get_metrics() can be used to get the
list of supported metrics for a particular object.

	
get_metrics(metric_names, objects)

	Returns parameters of specified metrics for a set of objects.

@c Null metrics array means all metrics. @c Null object array means
all existing objects.

	in metric_names of type str

	Metric name filter. Currently, only a comma-separated list of metrics
is supported.

	in objects of type Interface

	Set of objects to return metric parameters for.

	return metrics of type IPerformanceMetric

	Array of returned metric parameters.

	
setup_metrics(metric_names, objects, period, count)

	Sets parameters of specified base metrics for a set of objects. Returns
an array of IPerformanceMetric describing the metrics
have been affected.

@c Null or empty metric name array means all metrics. @c Null or
empty object array means all existing objects. If metric name array
contains a single element and object array contains many, the single
metric name array element is applied to each object array element to
form metric/object pairs.

	in metric_names of type str

	Metric name filter. Comma-separated list of metrics with wildcard
support.

	in objects of type Interface

	Set of objects to setup metric parameters for.

	in period of type int

	Time interval in seconds between two consecutive samples of
performance data.

	in count of type int

	Number of samples to retain in performance data history. Older
samples get discarded.

	return affected_metrics of type IPerformanceMetric

	Array of metrics that have been modified by the call to this method.

	
enable_metrics(metric_names, objects)

	Turns on collecting specified base metrics. Returns an array of
IPerformanceMetric describing the metrics have been
affected.

@c Null or empty metric name array means all metrics. @c Null or
empty object array means all existing objects. If metric name array
contains a single element and object array contains many, the single
metric name array element is applied to each object array element to
form metric/object pairs.

	in metric_names of type str

	Metric name filter. Comma-separated list of metrics with wildcard
support.

	in objects of type Interface

	Set of objects to enable metrics for.

	return affected_metrics of type IPerformanceMetric

	Array of metrics that have been modified by the call to this method.

	
disable_metrics(metric_names, objects)

	Turns off collecting specified base metrics. Returns an array of
IPerformanceMetric describing the metrics have been
affected.

@c Null or empty metric name array means all metrics. @c Null or
empty object array means all existing objects. If metric name array
contains a single element and object array contains many, the single
metric name array element is applied to each object array element to
form metric/object pairs.

	in metric_names of type str

	Metric name filter. Comma-separated list of metrics with wildcard
support.

	in objects of type Interface

	Set of objects to disable metrics for.

	return affected_metrics of type IPerformanceMetric

	Array of metrics that have been modified by the call to this method.

	
query_metrics_data(metric_names, objects)

	Queries collected metrics data for a set of objects.

The data itself and related metric information are returned in seven
parallel and one flattened array of arrays. Elements of
returnMetricNames, returnObjects, returnUnits, returnScales,
returnSequenceNumbers, returnDataIndices and returnDataLengths with
the same index describe one set of values corresponding to a single
metric.

The returnData parameter is a flattened array of arrays. Each
start and length of a sub-array is indicated by
returnDataIndices and returnDataLengths. The first
value for metric metricNames[i] is at
returnData[returnIndices[i]].

@c Null or empty metric name array means all metrics. @c Null or
empty object array means all existing objects. If metric name array
contains a single element and object array contains many, the single
metric name array element is applied to each object array element to
form metric/object pairs.

Data collection continues behind the scenes after call to
@c queryMetricsData. The return data can be seen as the snapshot of
the current state at the time of @c queryMetricsData call. The
internally kept metric values are not cleared by the call. This
allows querying different subsets of metrics or aggregates with
subsequent calls. If periodic querying is needed it is highly
suggested to query the values with @c interval*count period to avoid
confusion. This way a completely new set of data values will be
provided by each query.

	in metric_names of type str

	Metric name filter. Comma-separated list of metrics with wildcard
support.

	in objects of type Interface

	Set of objects to query metrics for.

	out return_metric_names of type str

	Names of metrics returned in @c returnData.

	out return_objects of type Interface

	Objects associated with metrics returned in @c returnData.

	out return_units of type str

	Units of measurement for each returned metric.

	out return_scales of type int

	Divisor that should be applied to return values in order to get
floating point values. For example:
(double)returnData[returnDataIndices[0]+i] / returnScales[0]
will retrieve the floating point value of i-th sample of the first
metric.

	out return_sequence_numbers of type int

	Sequence numbers of the first elements of value sequences of
particular metrics returned in @c returnData. For aggregate metrics
it is the sequence number of the sample the aggregate started
calculation from.

	out return_data_indices of type int

	Indices of the first elements of value sequences of particular
metrics returned in @c returnData.

	out return_data_lengths of type int

	Lengths of value sequences of particular metrics.

	return return_data of type int

	Flattened array of all metric data containing sequences of values for
each metric.

	
class virtualbox.library.INATEngine(interface=None)

	Interface for managing a NAT engine which is used with a virtual machine. This
allows for changing NAT behavior such as port-forwarding rules. This interface is
used in the INetworkAdapter.nat_engine() attribute.

	
network

	Get or set str value for ‘network’
The network attribute of the NAT engine (the same value is used with built-in
DHCP server to fill corresponding fields of DHCP leases).

	
host_ip

	Get or set str value for ‘hostIP’
IP of host interface to bind all opened sockets to.
Changing this does not change binding of port forwarding.

	
tftp_prefix

	Get or set str value for ‘TFTPPrefix’
TFTP prefix attribute which is used with the built-in DHCP server to fill
the corresponding fields of DHCP leases.

	
tftp_boot_file

	Get or set str value for ‘TFTPBootFile’
TFTP boot file attribute which is used with the built-in DHCP server to fill
the corresponding fields of DHCP leases.

	
tftp_next_server

	Get or set str value for ‘TFTPNextServer’
TFTP server attribute which is used with the built-in DHCP server to fill
the corresponding fields of DHCP leases.
The preferred form is IPv4 addresses.

	
alias_mode

	Get or set int value for ‘aliasMode’

	
dns_pass_domain

	Get or set bool value for ‘DNSPassDomain’
Whether the DHCP server should pass the DNS domain used by the host.

	
dns_proxy

	Get or set bool value for ‘DNSProxy’
Whether the DHCP server (and the DNS traffic by NAT) should pass the address
of the DNS proxy and process traffic using DNS servers registered on the host.

	
dns_use_host_resolver

	Get or set bool value for ‘DNSUseHostResolver’
Whether the DHCP server (and the DNS traffic by NAT) should pass the address
of the DNS proxy and process traffic using the host resolver mechanism.

	
redirects

	Get str value for ‘redirects’
Array of NAT port-forwarding rules in string representation, in the following
format: “name,protocol id,host ip,host port,guest ip,guest port”.

	
set_network_settings(mtu, sock_snd, sock_rcv, tcp_wnd_snd, tcp_wnd_rcv)

	Sets network configuration of the NAT engine.

	in mtu of type int

	MTU (maximum transmission unit) of the NAT engine in bytes.

	in sock_snd of type int

	Capacity of the socket send buffer in bytes when creating a new socket.

	in sock_rcv of type int

	Capacity of the socket receive buffer in bytes when creating a new socket.

	in tcp_wnd_snd of type int

	Initial size of the NAT engine’s sending TCP window in bytes when
establishing a new TCP connection.

	in tcp_wnd_rcv of type int

	Initial size of the NAT engine’s receiving TCP window in bytes when
establishing a new TCP connection.

	
get_network_settings()

	Returns network configuration of NAT engine. See set_network_settings()
for parameter descriptions.

out mtu of type int

out sock_snd of type int

out sock_rcv of type int

out tcp_wnd_snd of type int

out tcp_wnd_rcv of type int

	
add_redirect(name, proto, host_ip, host_port, guest_ip, guest_port)

	Adds a new NAT port-forwarding rule.

	in name of type str

	The name of the rule. An empty name is acceptable, in which case the NAT engine
auto-generates one using the other parameters.

	in proto of type NATProtocol

	Protocol handled with the rule.

	in host_ip of type str

	IP of the host interface to which the rule should apply. An empty ip address is
acceptable, in which case the NAT engine binds the handling socket to any interface.

	in host_port of type int

	The port number to listen on.

	in guest_ip of type str

	The IP address of the guest which the NAT engine will forward matching packets
to. An empty IP address is acceptable, in which case the NAT engine will forward
packets to the first DHCP lease (x.x.x.15).

	in guest_port of type int

	The port number to forward.

	
remove_redirect(name)

	Removes a port-forwarding rule that was previously registered.

	in name of type str

	The name of the rule to delete.

	
class virtualbox.library.IExtPackPlugIn(interface=None)

	Interface for keeping information about a plug-in that ships with an
extension pack.

	
name

	Get str value for ‘name’
The plug-in name.

	
description

	Get str value for ‘description’
The plug-in description.

	
frontend

	Get str value for ‘frontend’
The name of the frontend or component name this plug-in plugs into.

	
module_path

	Get str value for ‘modulePath’
The module path.

	
class virtualbox.library.IExtPackBase(interface=None)

	Interface for querying information about an extension pack as well as
accessing COM objects within it.

	
name

	Get str value for ‘name’
The extension pack name. This is unique.

	
description

	Get str value for ‘description’
The extension pack description.

	
version

	Get str value for ‘version’
The extension pack version string. This is restricted to the dotted
version number and optionally a build indicator. No tree revision or
tag will be included in the string as those things are available as
separate properties. An optional publisher tag may be present like for
IVirtualBox.version() .

Examples: “1.2.3”, “1.2.3_BETA1” and “1.2.3_RC2”.

	
revision

	Get int value for ‘revision’
The extension pack internal revision number.

	
edition

	Get str value for ‘edition’
Edition indicator. This is usually empty.

Can for instance be used to help distinguishing between two editions
of the same extension pack where only the license, service contract or
something differs.

	
vrde_module

	Get str value for ‘VRDEModule’
The name of the VRDE module if the extension pack sports one.

	
plug_ins

	Get IExtPackPlugIn value for ‘plugIns’
Plug-ins provided by this extension pack.

	
usable

	Get bool value for ‘usable’
Indicates whether the extension pack is usable or not.

There are a number of reasons why an extension pack might be unusable,
typical examples would be broken installation/file or that it is
incompatible with the current VirtualBox version.

	
why_unusable

	Get str value for ‘whyUnusable’
String indicating why the extension pack is not usable. This is an
empty string if usable and always a non-empty string if not usable.

	
show_license

	Get bool value for ‘showLicense’
Whether to show the license before installation

	
license_p

	Get str value for ‘license’
The default HTML license text for the extension pack. Same as
calling query_license() queryLicense with
preferredLocale and preferredLanguage as empty strings and format set
to html.

	
query_license(preferred_locale, preferred_language, format_p)

	Full feature version of the license attribute.

	in preferred_locale of type str

	The preferred license locale. Pass an empty string to get the default
license.

	in preferred_language of type str

	The preferred license language. Pass an empty string to get the
default language for the locale.

	in format_p of type str

	The license format: html, rtf or txt. If a license is present there
will always be an HTML of it, the rich text format (RTF) and plain
text (txt) versions are optional. If

	return license_text of type str

	The license text.

	
class virtualbox.library.IExtPack(interface=None)

	Interface for querying information about an extension pack as well as
accessing COM objects within it.

	
query_object(obj_uuid)

	Queries the IUnknown interface to an object in the extension pack
main module. This allows plug-ins and others to talk directly to an
extension pack.

	in obj_uuid of type str

	The object ID. What exactly this is

	return return_interface of type Interface

	The queried interface.

	
class virtualbox.library.IExtPackFile(interface=None)

	Extension pack file (aka tarball, .vbox-extpack) representation returned
by IExtPackManager.open_ext_pack_file() . This provides the base
extension pack information with the addition of the file name.

	
file_path

	Get str value for ‘filePath’
The path to the extension pack file.

	
install(replace, display_info)

	Install the extension pack.

	in replace of type bool

	Set this to automatically uninstall any existing extension pack with
the same name as the one being installed.

	in display_info of type str

	Platform specific display information. Reserved for future hacks.

	return progess of type IProgress

	Progress object for the operation.

	
class virtualbox.library.IExtPackManager(interface=None)

	Interface for managing VirtualBox Extension Packs.

@todo Describe extension packs, how they are managed and how to create one.

	
installed_ext_packs

	Get IExtPack value for ‘installedExtPacks’
List of the installed extension packs.

	
find(name)

	Returns the extension pack with the specified name if found.

	in name of type str

	The name of the extension pack to locate.

	return return_data of type IExtPack

	The extension pack if found.

	raises VBoxErrorObjectNotFound

	No extension pack matching @a name was found.

	
open_ext_pack_file(path)

	Attempts to open an extension pack file in preparation for
installation.

	in path of type str

	The path of the extension pack tarball. This can optionally be
followed by a ”::SHA-256=hex-digit” of the tarball.

	return file_p of type IExtPackFile

	The interface of the extension pack file object.

	
uninstall(name, forced_removal, display_info)

	Uninstalls an extension pack, removing all related files.

	in name of type str

	The name of the extension pack to uninstall.

	in forced_removal of type bool

	Forced removal of the extension pack. This means that the uninstall
hook will not be called.

	in display_info of type str

	Platform specific display information. Reserved for future hacks.

	return progess of type IProgress

	Progress object for the operation.

	
cleanup()

	Cleans up failed installs and uninstalls

	
query_all_plug_ins_for_frontend(frontend_name)

	Gets the path to all the plug-in modules for a given frontend.

This is a convenience method that is intended to simplify the plug-in
loading process for a frontend.

	in frontend_name of type str

	The name of the frontend or component.

	return plug_in_modules of type str

	Array containing the plug-in modules (full paths).

	
is_ext_pack_usable(name)

	Check if the given extension pack is loaded and usable.

	in name of type str

	The name of the extension pack to check for.

	return usable of type bool

	Is the given extension pack loaded and usable.

	
class virtualbox.library.IBandwidthGroup(interface=None)

	Represents one bandwidth group.

	
name

	Get str value for ‘name’
Name of the group.

	
type_p

	Get BandwidthGroupType value for ‘type’
Type of the group.

	
reference

	Get int value for ‘reference’
How many devices/medium attachments use this group.

	
max_bytes_per_sec

	Get or set int value for ‘maxBytesPerSec’
The maximum number of bytes which can be transfered by all
entities attached to this group during one second.

	
class virtualbox.library.IBandwidthControl(interface=None)

	Controls the bandwidth groups of one machine used to cap I/O done by a VM.
This includes network and disk I/O.

	
num_groups

	Get int value for ‘numGroups’
The current number of existing bandwidth groups managed.

	
create_bandwidth_group(name, type_p, max_bytes_per_sec)

	Creates a new bandwidth group.

	in name of type str

	Name of the bandwidth group.

	in type_p of type BandwidthGroupType

	The type of the bandwidth group (network or disk).

	in max_bytes_per_sec of type int

	The maximum number of bytes which can be transfered by all
entities attached to this group during one second.

	
delete_bandwidth_group(name)

	Deletes a new bandwidth group.

	in name of type str

	Name of the bandwidth group to delete.

	
get_bandwidth_group(name)

	Get a bandwidth group by name.

	in name of type str

	Name of the bandwidth group to get.

	return bandwidth_group of type IBandwidthGroup

	Where to store the bandwidth group on success.

	
get_all_bandwidth_groups()

	Get all managed bandwidth groups.

	return bandwidth_groups of type IBandwidthGroup

	The array of managed bandwidth groups.

	
class virtualbox.library.IVirtualBoxClient(interface=None)

	Convenience interface for client applications. Treat this as a
singleton, i.e. never create more than one instance of this interface.

At the moment only available for clients of the local API (not usable
via the webservice). Once the session logic is redesigned this might
change.

Error information handling is a bit special with IVirtualBoxClient:
creating an instance will always succeed. The return of the actual error
code/information is postponed to any attribute or method call. The
reason for this is that COM likes to mutilate the error code and lose
the detailed error information returned by instance creation.

	
virtual_box

	Get IVirtualBox value for ‘virtualBox’
Reference to the server-side API root object.

	
session

	Get ISession value for ‘session’
Create a new session object and return the reference to it.

	
event_source

	Get IEventSource value for ‘eventSource’
Event source for VirtualBoxClient events.

	
check_machine_error(machine)

	Perform error checking before using an IMachine object.
Generally useful before starting a VM and all other uses. If anything
is not as it should be then this method will return an appropriate
error.

	in machine of type IMachine

	The machine object to check.

	
class virtualbox.library.IEventListener(interface=None)

	Event listener. An event listener can work in either active or passive mode, depending on the way
it was registered.
See IEvent for an introduction to VirtualBox event handling.

	
handle_event(event)

	Handle event callback for active listeners. It is not called for
passive listeners. After calling handle_event() on all active listeners
and having received acknowledgement from all passive listeners via
IEventSource.event_processed() , the event is marked as
processed and IEvent.wait_processed() will return
immediately.

	in event of type IEvent

	Event available.

	
class virtualbox.library.IEvent(interface=None)

	Abstract parent interface for VirtualBox events. Actual events will typically implement
a more specific interface which derives from this (see below).

Introduction to VirtualBox events

Generally speaking, an event (represented by this interface) signals that something
happened, while an event listener (see IEventListener) represents an
entity that is interested in certain events. In order for this to work with
unidirectional protocols (i.e. web services), the concepts of passive and active
listener are used.

Event consumers can register themselves as listeners, providing an array of
events they are interested in (see IEventSource.register_listener()).
When an event triggers, the listener is notified about the event. The exact
mechanism of the notification depends on whether the listener was registered as
an active or passive listener:

An active listener is very similar to a callback: it is a function invoked
by the API. As opposed to the callbacks that were used in the API before
VirtualBox 4.0 however, events are now objects with an interface hierarchy.

Passive listeners are somewhat trickier to implement, but do not require
a client function to be callable, which is not an option with scripting
languages or web service clients. Internally the IEventSource
implementation maintains an event queue for each passive listener, and
newly arrived events are put in this queue. When the listener calls
IEventSource.get_event() , first element from its internal event
queue is returned. When the client completes processing of an event,
the IEventSource.event_processed() function must be called,
acknowledging that the event was processed. It supports implementing
waitable events. On passive listener unregistration, all events from its
queue are auto-acknowledged.

Waitable events are useful in situations where the event generator wants to track
delivery or a party wants to wait until all listeners have completed the event. A
typical example would be a vetoable event (see IVetoEvent) where a
listeners might veto a certain action, and thus the event producer has to make
sure that all listeners have processed the event and not vetoed before taking
the action.

A given event may have both passive and active listeners at the same time.

Using events

Any VirtualBox object capable of producing externally visible events provides an
@c eventSource read-only attribute, which is of the type IEventSource .
This event source object is notified by VirtualBox once something has happened, so
consumers may register event listeners with this event source. To register a listener,
an object implementing the IEventListener interface must be provided.
For active listeners, such an object is typically created by the consumer, while for
passive listeners IEventSource.create_listener() should be used. Please
note that a listener created with IEventSource.create_listener() must not be used as an active listener.

Once created, the listener must be registered to listen for the desired events
(see IEventSource.register_listener()), providing an array of
VBoxEventType enums. Those elements can either be the individual
event IDs or wildcards matching multiple event IDs.

After registration, the callback’s IEventListener.handle_event() method is
called automatically when the event is triggered, while passive listeners have to call
IEventSource.get_event() and IEventSource.event_processed() in
an event processing loop.

The IEvent interface is an abstract parent interface for all such VirtualBox events
coming in. As a result, the standard use pattern inside IEventListener.handle_event()
or the event processing loop is to check the type_p() attribute of the event and
then cast to the appropriate specific interface using @c QueryInterface().

	
type_p

	Get VBoxEventType value for ‘type’
Event type.

	
source

	Get IEventSource value for ‘source’
Source of this event.

	
waitable

	Get bool value for ‘waitable’
If we can wait for this event being processed. If false, wait_processed() returns immediately,
and set_processed() doesn’t make sense. Non-waitable events are generally better performing,
as no additional overhead associated with waitability imposed.
Waitable events are needed when one need to be able to wait for particular event processed,
for example for vetoable changes, or if event refers to some resource which need to be kept immutable
until all consumers confirmed events.

	
set_processed()

	Internal method called by the system when all listeners of a particular event have called
IEventSource.event_processed() . This should not be called by client code.

	
wait_processed(timeout)

	Wait until time outs, or this event is processed. Event must be waitable for this operation to have
described semantics, for non-waitable returns true immediately.

	in timeout of type int

	Maximum time to wait for event processing, in ms;
0 = no wait, -1 = indefinite wait.

	return result of type bool

	If this event was processed before timeout.

	
class virtualbox.library.IReusableEvent(interface=None)

	Base abstract interface for all reusable events.

	
generation

	Get int value for ‘generation’
Current generation of event, incremented on reuse.

	
reuse()

	Marks an event as reused, increments ‘generation’, fields shall no
longer be considered valid.

	
class virtualbox.library.IMachineEvent(interface=None)

	Base abstract interface for all machine events.

	
id = VBoxEventType(3)

	

	
machine_id

	Get str value for ‘machineId’
ID of the machine this event relates to.

	
class virtualbox.library.IMachineStateChangedEvent(interface=None)

	Machine state change event.

	
id = VBoxEventType(32)

	

	
state

	Get MachineState value for ‘state’
New execution state.

	
class virtualbox.library.IMachineDataChangedEvent(interface=None)

	Any of the settings of the given machine has changed.

	
id = VBoxEventType(33)

	

	
temporary

	Get bool value for ‘temporary’
@c true if the settings change is temporary. All permanent
settings changes will trigger an event, and only temporary settings
changes for running VMs will trigger an event. Note: sending events
for temporary changes is NOT IMPLEMENTED.

	
class virtualbox.library.IMediumRegisteredEvent(interface=None)

	The given medium was registered or unregistered
within this VirtualBox installation.
This event is not yet implemented.

	
id = VBoxEventType(36)

	

	
medium_id

	Get str value for ‘mediumId’
ID of the medium this event relates to.

	
medium_type

	Get DeviceType value for ‘mediumType’
Type of the medium this event relates to.

	
registered

	Get bool value for ‘registered’
If @c true, the medium was registered, otherwise it was
unregistered.

	
class virtualbox.library.IMediumConfigChangedEvent(interface=None)

	The configuration of the given medium was changed (location, properties,
child/parent or anything else).
This event is not yet implemented.

	
id = VBoxEventType(96)

	

	
medium

	Get IMedium value for ‘medium’
ID of the medium this event relates to.

	
class virtualbox.library.IMachineRegisteredEvent(interface=None)

	The given machine was registered or unregistered
within this VirtualBox installation.

	
id = VBoxEventType(37)

	

	
registered

	Get bool value for ‘registered’
If @c true, the machine was registered, otherwise it was
unregistered.

	
class virtualbox.library.ISessionStateChangedEvent(interface=None)

	The state of the session for the given machine was changed.
IMachine.session_state()

	
id = VBoxEventType(38)

	

	
state

	Get SessionState value for ‘state’
New session state.

	
class virtualbox.library.IGuestPropertyChangedEvent(interface=None)

	Notification when a guest property has changed.

	
id = VBoxEventType(42)

	

	
name

	Get str value for ‘name’
The name of the property that has changed.

	
value

	Get str value for ‘value’
The new property value.

	
flags

	Get str value for ‘flags’
The new property flags.

	
class virtualbox.library.ISnapshotEvent(interface=None)

	Base interface for all snapshot events.

	
id = VBoxEventType(4)

	

	
snapshot_id

	Get str value for ‘snapshotId’
ID of the snapshot this event relates to.

	
class virtualbox.library.ISnapshotTakenEvent(interface=None)

	A new snapshot of the machine has been taken.
ISnapshot

	
id = VBoxEventType(39)

	

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.ISnapshotDeletedEvent(interface=None)

	Snapshot of the given machine has been deleted.

This notification is delivered after the snapshot
object has been uninitialized on the server (so that any
attempt to call its methods will return an error).

ISnapshot

	
id = VBoxEventType(40)

	

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.ISnapshotRestoredEvent(interface=None)

	Snapshot of the given machine has been restored.
ISnapshot

	
id = VBoxEventType(95)

	

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.ISnapshotChangedEvent(interface=None)

	Snapshot properties (name and/or description) have been changed.
ISnapshot

	
id = VBoxEventType(41)

	

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.IMousePointerShapeChangedEvent(interface=None)

	Notification when the guest mouse pointer shape has
changed. The new shape data is given.

	
id = VBoxEventType(43)

	

	
visible

	Get bool value for ‘visible’
Flag whether the pointer is visible.

	
alpha

	Get bool value for ‘alpha’
Flag whether the pointer has an alpha channel.

	
xhot

	Get int value for ‘xhot’
The pointer hot spot X coordinate.

	
yhot

	Get int value for ‘yhot’
The pointer hot spot Y coordinate.

	
width

	Get int value for ‘width’
Width of the pointer shape in pixels.

	
height

	Get int value for ‘height’
Height of the pointer shape in pixels.

	
shape

	Get str value for ‘shape’
Shape buffer arrays.

The @a shape buffer contains a 1-bpp (bits per pixel) AND mask
followed by a 32-bpp XOR (color) mask.

For pointers without alpha channel the XOR mask pixels are
32-bit values: (lsb)BGR0(msb). For pointers with alpha channel
the XOR mask consists of (lsb)BGRA(msb) 32-bit values.

An AND mask is used for pointers with alpha channel, so if the
callback does not support alpha, the pointer could be
displayed as a normal color pointer.

The AND mask is a 1-bpp bitmap with byte aligned scanlines. The
size of the AND mask therefore is cbAnd = (width + 7) / 8 *
height. The padding bits at the end of each scanline are
undefined.

The XOR mask follows the AND mask on the next 4-byte aligned
offset: uint8_t *pXor = pAnd + (cbAnd + 3) & ~3.
Bytes in the gap between the AND and the XOR mask are undefined.
The XOR mask scanlines have no gap between them and the size of
the XOR mask is: cXor = width * 4 * height.

If @a shape is 0, only the pointer visibility is changed.

	
class virtualbox.library.IMouseCapabilityChangedEvent(interface=None)

	Notification when the mouse capabilities reported by the
guest have changed. The new capabilities are passed.

	
id = VBoxEventType(44)

	

	
supports_absolute

	Get bool value for ‘supportsAbsolute’
Supports absolute coordinates.

	
supports_relative

	Get bool value for ‘supportsRelative’
Supports relative coordinates.

	
supports_multi_touch

	Get bool value for ‘supportsMultiTouch’
Supports multi-touch events coordinates.

	
needs_host_cursor

	Get bool value for ‘needsHostCursor’
If host cursor is needed.

	
class virtualbox.library.IKeyboardLedsChangedEvent(interface=None)

	Notification when the guest OS executes the KBD_CMD_SET_LEDS command
to alter the state of the keyboard LEDs.

	
id = VBoxEventType(45)

	

	
num_lock

	Get bool value for ‘numLock’
NumLock status.

	
caps_lock

	Get bool value for ‘capsLock’
CapsLock status.

	
scroll_lock

	Get bool value for ‘scrollLock’
ScrollLock status.

	
class virtualbox.library.IStateChangedEvent(interface=None)

	Notification when the execution state of the machine has changed.
The new state is given.

	
id = VBoxEventType(46)

	

	
state

	Get MachineState value for ‘state’
New machine state.

	
class virtualbox.library.IAdditionsStateChangedEvent(interface=None)

	Notification when a Guest Additions property changes.
Interested callees should query IGuest attributes to
find out what has changed.

	
id = VBoxEventType(47)

	

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.INetworkAdapterChangedEvent(interface=None)

	Notification when a property of one of the
virtual IMachine.get_network_adapter() network adapters
changes. Interested callees should use INetworkAdapter methods and
attributes to find out what has changed.

	
id = VBoxEventType(48)

	

	
network_adapter

	Get INetworkAdapter value for ‘networkAdapter’
Network adapter that is subject to change.

	
class virtualbox.library.ISerialPortChangedEvent(interface=None)

	Notification when a property of one of the
virtual IMachine.get_serial_port() serial ports changes.
Interested callees should use ISerialPort methods and attributes
to find out what has changed.

	
id = VBoxEventType(49)

	

	
serial_port

	Get ISerialPort value for ‘serialPort’
Serial port that is subject to change.

	
class virtualbox.library.IParallelPortChangedEvent(interface=None)

	Notification when a property of one of the
virtual IMachine.get_parallel_port() parallel ports
changes. Interested callees should use ISerialPort methods and
attributes to find out what has changed.

	
id = VBoxEventType(50)

	

	
parallel_port

	Get IParallelPort value for ‘parallelPort’
Parallel port that is subject to change.

	
class virtualbox.library.IStorageControllerChangedEvent(interface=None)

	Notification when a
IMachine.medium_attachments() medium attachment
changes.

	
id = VBoxEventType(51)

	

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.IMediumChangedEvent(interface=None)

	Notification when a
IMachine.medium_attachments() medium attachment
changes.
This event is not yet implemented.

	
id = VBoxEventType(52)

	

	
medium_attachment

	Get IMediumAttachment value for ‘mediumAttachment’
Medium attachment that is subject to change.

	
class virtualbox.library.IClipboardModeChangedEvent(interface=None)

	Notification when the shared clipboard mode changes.

	
id = VBoxEventType(72)

	

	
clipboard_mode

	Get ClipboardMode value for ‘clipboardMode’
The new clipboard mode.

	
class virtualbox.library.IDnDModeChangedEvent(interface=None)

	Notification when the drag’n drop mode changes.

	
id = VBoxEventType(73)

	

	
dnd_mode

	Get DnDMode value for ‘dndMode’
The new drag’n drop mode.

	
class virtualbox.library.ICPUChangedEvent(interface=None)

	Notification when a CPU changes.

	
id = VBoxEventType(60)

	

	
cpu

	Get int value for ‘CPU’
The CPU which changed.

	
add

	Get bool value for ‘add’
Flag whether the CPU was added or removed.

	
class virtualbox.library.ICPUExecutionCapChangedEvent(interface=None)

	Notification when the CPU execution cap changes.

	
id = VBoxEventType(63)

	

	
execution_cap

	Get int value for ‘executionCap’
The new CPU execution cap value. (1-100)

	
class virtualbox.library.IGuestKeyboardEvent(interface=None)

	Notification when guest keyboard event happens.

	
id = VBoxEventType(64)

	

	
scancodes

	Get int value for ‘scancodes’
Array of scancodes.

	
class virtualbox.library.IGuestMouseEvent(interface=None)

	Notification when guest mouse event happens.

	
id = VBoxEventType(65)

	

	
mode

	Get GuestMouseEventMode value for ‘mode’
If this event is relative, absolute or multi-touch.

	
x

	Get int value for ‘x’
New X position, or X delta.

	
y

	Get int value for ‘y’
New Y position, or Y delta.

	
z

	Get int value for ‘z’
Z delta.

	
w

	Get int value for ‘w’
W delta.

	
buttons

	Get int value for ‘buttons’
Button state bitmask.

	
class virtualbox.library.IGuestMultiTouchEvent(interface=None)

	Notification when guest touch screen event happens.

	
id = VBoxEventType(93)

	

	
contact_count

	Get int value for ‘contactCount’
Number of contacts in the event.

	
x_positions

	Get int value for ‘xPositions’
X positions.

	
y_positions

	Get int value for ‘yPositions’
Y positions.

	
contact_ids

	Get int value for ‘contactIds’
Contact identifiers.

	
contact_flags

	Get int value for ‘contactFlags’
Contact state.
Bit 0: in contact.
Bit 1: in range.

	
scan_time

	Get int value for ‘scanTime’
Timestamp of the event in milliseconds. Only relative time between events is important.

	
class virtualbox.library.IGuestSessionEvent(interface=None)

	Base abstract interface for all guest session events.

	
session

	Get IGuestSession value for ‘session’
Guest session that is subject to change.

	
class virtualbox.library.IGuestSessionStateChangedEvent(interface=None)

	Notification when a guest session changed its state.

	
id = VBoxEventType(80)

	

	
id_p

	Get int value for ‘id’
Session ID of guest session which was changed.

	
status

	Get GuestSessionStatus value for ‘status’
New session status.

	
error

	Get IVirtualBoxErrorInfo value for ‘error’
Error information in case of new session status is indicating an error.

The attribute IVirtualBoxErrorInfo.result_detail() will contain
the runtime (IPRT) error code from the guest. See include/iprt/err.h and
include/VBox/err.h for details.

	
class virtualbox.library.IGuestSessionRegisteredEvent(interface=None)

	Notification when a guest session was registered or unregistered.

	
id = VBoxEventType(81)

	

	
registered

	Get bool value for ‘registered’
If @c true, the guest session was registered, otherwise it was
unregistered.

	
class virtualbox.library.IGuestProcessEvent(interface=None)

	Base abstract interface for all guest process events.

	
process

	Get IGuestProcess value for ‘process’
Guest process object which is related to this event.

	
pid

	Get int value for ‘pid’
Guest process ID (PID).

	
class virtualbox.library.IGuestProcessRegisteredEvent(interface=None)

	Notification when a guest process was registered or unregistered.

	
id = VBoxEventType(82)

	

	
registered

	Get bool value for ‘registered’
If @c true, the guest process was registered, otherwise it was
unregistered.

	
class virtualbox.library.IGuestProcessStateChangedEvent(interface=None)

	Notification when a guest process changed its state.

	
id = VBoxEventType(83)

	

	
status

	Get ProcessStatus value for ‘status’
New guest process status.

	
error

	Get IVirtualBoxErrorInfo value for ‘error’
Error information in case of new session status is indicating an error.

The attribute IVirtualBoxErrorInfo.result_detail() will contain
the runtime (IPRT) error code from the guest. See include/iprt/err.h and
include/VBox/err.h for details.

	
class virtualbox.library.IGuestProcessIOEvent(interface=None)

	Base abstract interface for all guest process input/output (IO) events.

	
handle

	Get int value for ‘handle’
Input/output (IO) handle involved in this event. Usually 0 is stdin,
1 is stdout and 2 is stderr.

	
processed

	Get int value for ‘processed’
Processed input or output (in bytes).

	
class virtualbox.library.IGuestProcessInputNotifyEvent(interface=None)

	Notification when a guest process’ stdin became available.
This event is right now not implemented!

	
id = VBoxEventType(84)

	

	
status

	Get ProcessInputStatus value for ‘status’
Current process input status.

	
class virtualbox.library.IGuestProcessOutputEvent(interface=None)

	Notification when there is guest process output available for reading.

	
id = VBoxEventType(85)

	

	
data

	Get str value for ‘data’
Actual output data.

	
class virtualbox.library.IGuestFileEvent(interface=None)

	Base abstract interface for all guest file events.

	
file_p

	Get IGuestFile value for ‘file’
Guest file object which is related to this event.

	
class virtualbox.library.IGuestFileRegisteredEvent(interface=None)

	Notification when a guest file was registered or unregistered.

	
id = VBoxEventType(86)

	

	
registered

	Get bool value for ‘registered’
If @c true, the guest file was registered, otherwise it was
unregistered.

	
class virtualbox.library.IGuestFileStateChangedEvent(interface=None)

	Notification when a guest file changed its state.

	
id = VBoxEventType(87)

	

	
status

	Get FileStatus value for ‘status’
New guest file status.

	
error

	Get IVirtualBoxErrorInfo value for ‘error’
Error information in case of new session status is indicating an error.

The attribute IVirtualBoxErrorInfo.result_detail() will contain
the runtime (IPRT) error code from the guest. See include/iprt/err.h and
include/VBox/err.h for details.

	
class virtualbox.library.IGuestFileIOEvent(interface=None)

	Base abstract interface for all guest file input/output (IO) events.

	
offset

	Get int value for ‘offset’
Current offset (in bytes).

	
processed

	Get int value for ‘processed’
Processed input or output (in bytes).

	
class virtualbox.library.IGuestFileOffsetChangedEvent(interface=None)

	Notification when a guest file changed its current offset.

	
id = VBoxEventType(88)

	

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.IGuestFileReadEvent(interface=None)

	Notification when data has been read from a guest file.

	
id = VBoxEventType(89)

	

	
data

	Get str value for ‘data’
Actual data read.

	
class virtualbox.library.IGuestFileWriteEvent(interface=None)

	Notification when data has been written to a guest file.

	
id = VBoxEventType(90)

	

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.IVRDEServerChangedEvent(interface=None)

	Notification when a property of the
IMachine.vrde_server() VRDE server changes.
Interested callees should use IVRDEServer methods and attributes to
find out what has changed.

	
id = VBoxEventType(53)

	

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.IVRDEServerInfoChangedEvent(interface=None)

	Notification when the status of the VRDE server changes. Interested callees
should use IConsole.vrde_server_info() IVRDEServerInfo
attributes to find out what is the current status.

	
id = VBoxEventType(61)

	

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.IVideoCaptureChangedEvent(interface=None)

	Notification when video capture settings have changed.

	
id = VBoxEventType(91)

	

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.IUSBControllerChangedEvent(interface=None)

	Notification when a property of the virtual
IMachine.usb_controllers() USB controllers changes.
Interested callees should use IUSBController methods and attributes to
find out what has changed.

	
id = VBoxEventType(54)

	

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.IUSBDeviceStateChangedEvent(interface=None)

	Notification when a USB device is attached to or detached from
the virtual USB controller.

This notification is sent as a result of the indirect
request to attach the device because it matches one of the
machine USB filters, or as a result of the direct request
issued by IConsole.attach_usb_device() or
IConsole.detach_usb_device() .

This notification is sent in case of both a succeeded and a
failed request completion. When the request succeeds, the
@a error parameter is @c null, and the given device has been
already added to (when @a attached is @c true) or removed from
(when @a attached is @c false) the collection represented by
IConsole.usb_devices() . On failure, the collection
doesn’t change and the @a error parameter represents the error
message describing the failure.

	
id = VBoxEventType(55)

	

	
device

	Get IUSBDevice value for ‘device’
Device that is subject to state change.

	
attached

	Get bool value for ‘attached’
@c true if the device was attached and @c false otherwise.

	
error

	Get IVirtualBoxErrorInfo value for ‘error’
@c null on success or an error message object on failure.

	
class virtualbox.library.ISharedFolderChangedEvent(interface=None)

	Notification when a shared folder is added or removed.
The @a scope argument defines one of three scopes:
IVirtualBox.shared_folders() global shared folders
(Scope.global_p Global),
IMachine.shared_folders() permanent shared folders of
the machine (Scope.machine Machine) or IConsole.shared_folders() transient shared folders of the
machine (Scope.session Session). Interested callees
should use query the corresponding collections to find out what has
changed.

	
id = VBoxEventType(56)

	

	
scope

	Get Scope value for ‘scope’
Scope of the notification.

	
class virtualbox.library.IRuntimeErrorEvent(interface=None)

	Notification when an error happens during the virtual
machine execution.

There are three kinds of runtime errors:

fatal
non-fatal with retry
non-fatal warnings

Fatal errors are indicated by the @a fatal parameter set
to @c true. In case of fatal errors, the virtual machine
execution is always paused before calling this notification, and
the notification handler is supposed either to immediately save
the virtual machine state using IMachine.save_state()
or power it off using IConsole.power_down() .
Resuming the execution can lead to unpredictable results.

Non-fatal errors and warnings are indicated by the
@a fatal parameter set to @c false. If the virtual machine
is in the Paused state by the time the error notification is
received, it means that the user can try to resume the machine
execution after attempting to solve the problem that caused the
error. In this case, the notification handler is supposed
to show an appropriate message to the user (depending on the
value of the @a id parameter) that offers several actions such
as Retry, Save or Power Off. If the user
wants to retry, the notification handler should continue
the machine execution using the IConsole.resume()
call. If the machine execution is not Paused during this
notification, then it means this notification is a warning
(for example, about a fatal condition that can happen very soon);
no immediate action is required from the user, the machine
continues its normal execution.

Note that in either case the notification handler
must not perform any action directly on a thread
where this notification is called. Everything it is allowed to
do is to post a message to another thread that will then talk
to the user and take the corresponding action.

Currently, the following error identifiers are known:

“HostMemoryLow”
“HostAudioNotResponding”
“VDIStorageFull”
“3DSupportIncompatibleAdditions”

	
id = VBoxEventType(57)

	

	
fatal

	Get bool value for ‘fatal’
Whether the error is fatal or not.

	
id_p

	Get str value for ‘id’
Error identifier.

	
message

	Get str value for ‘message’
Optional error message.

	
class virtualbox.library.IEventSourceChangedEvent(interface=None)

	Notification when an event source state changes (listener added or removed).

	
id = VBoxEventType(62)

	

	
listener

	Get IEventListener value for ‘listener’
Event listener which has changed.

	
add

	Get bool value for ‘add’
Flag whether listener was added or removed.

	
class virtualbox.library.IExtraDataChangedEvent(interface=None)

	Notification when machine specific or global extra data
has changed.

	
id = VBoxEventType(34)

	

	
machine_id

	Get str value for ‘machineId’
ID of the machine this event relates to.
Null for global extra data changes.

	
key

	Get str value for ‘key’
Extra data key that has changed.

	
value

	Get str value for ‘value’
Extra data value for the given key.

	
class virtualbox.library.IVetoEvent(interface=None)

	Base abstract interface for veto events.

	
add_veto(reason)

	Adds a veto on this event.

	in reason of type str

	Reason for veto, could be null or empty string.

	
is_vetoed()

	If this event was vetoed.

	return result of type bool

	Reason for veto.

	
get_vetos()

	Current veto reason list, if size is 0 - no veto.

	return result of type str

	Array of reasons for veto provided by different event handlers.

	
add_approval(reason)

	Adds an approval on this event.

	in reason of type str

	Reason for approval, could be null or empty string.

	
is_approved()

	If this event was approved.

return result of type bool

	
get_approvals()

	Current approval reason list, if size is 0 - no approvals.

	return result of type str

	Array of reasons for approval provided by different event handlers.

	
class virtualbox.library.IExtraDataCanChangeEvent(interface=None)

	Notification when someone tries to change extra data for
either the given machine or (if @c null) global extra data.
This gives the chance to veto against changes.

	
id = VBoxEventType(35)

	

	
machine_id

	Get str value for ‘machineId’
ID of the machine this event relates to.
Null for global extra data changes.

	
key

	Get str value for ‘key’
Extra data key that has changed.

	
value

	Get str value for ‘value’
Extra data value for the given key.

	
class virtualbox.library.ICanShowWindowEvent(interface=None)

	Notification when a call to
IMachine.can_show_console_window() is made by a
front-end to check if a subsequent call to
IMachine.show_console_window() can succeed.

The callee should give an answer appropriate to the current
machine state using event veto. This answer must
remain valid at least until the next
IConsole.state() machine state change.

	
id = VBoxEventType(58)

	

	
midl_does_not_like_empty_interfaces

	Get bool value for ‘midlDoesNotLikeEmptyInterfaces’

	
class virtualbox.library.IShowWindowEvent(interface=None)

	Notification when a call to
IMachine.show_console_window()
requests the console window to be activated and brought to
foreground on the desktop of the host PC.

This notification should cause the VM console process to
perform the requested action as described above. If it is
impossible to do it at a time of this notification, this
method should return a failure.

Note that many modern window managers on many platforms
implement some sort of focus stealing prevention logic, so
that it may be impossible to activate a window without the
help of the currently active application (which is supposedly
an initiator of this notification). In this case, this method
must return a non-zero identifier that represents the
top-level window of the VM console process. The caller, if it
represents a currently active process, is responsible to use
this identifier (in a platform-dependent manner) to perform
actual window activation.

This method must set @a winId to zero if it has performed all
actions necessary to complete the request and the console
window is now active and in foreground, to indicate that no
further action is required on the caller’s side.

	
id = VBoxEventType(59)

	

	
win_id

	Get or set int value for ‘winId’
Platform-dependent identifier of the top-level VM console
window, or zero if this method has performed all actions
necessary to implement the show window semantics for
the given platform and/or this VirtualBox front-end.

	
class virtualbox.library.INATRedirectEvent(interface=None)

	Notification when NAT redirect rule added or removed.

	
id = VBoxEventType(66)

	

	
slot

	Get int value for ‘slot’
Adapter which NAT attached to.

	
remove

	Get bool value for ‘remove’
Whether rule remove or add.

	
name

	Get str value for ‘name’
Name of the rule.

	
proto

	Get NATProtocol value for ‘proto’
Protocol (TCP or UDP) of the redirect rule.

	
host_ip

	Get str value for ‘hostIP’
Host ip address to bind socket on.

	
host_port

	Get int value for ‘hostPort’
Host port to bind socket on.

	
guest_ip

	Get str value for ‘guestIP’
Guest ip address to redirect to.

	
guest_port

	Get int value for ‘guestPort’
Guest port to redirect to.

	
class virtualbox.library.IHostPCIDevicePlugEvent(interface=None)

	Notification when host PCI device is plugged/unplugged. Plugging
usually takes place on VM startup, unplug - when
IMachine.detach_host_pci_device() is called.

IMachine.detach_host_pci_device()

	
id = VBoxEventType(67)

	

	
plugged

	Get bool value for ‘plugged’
If device successfully plugged or unplugged.

	
success

	Get bool value for ‘success’
If operation was successful, if false - ‘message’ attribute
may be of interest.

	
attachment

	Get IPCIDeviceAttachment value for ‘attachment’
Attachment info for this device.

	
message

	Get str value for ‘message’
Optional error message.

	
class virtualbox.library.IVBoxSVCAvailabilityChangedEvent(interface=None)

	Notification when VBoxSVC becomes unavailable (due to a crash or similar
unexpected circumstances) or available again.

	
id = VBoxEventType(68)

	

	
available

	Get bool value for ‘available’
Whether VBoxSVC is available now.

	
class virtualbox.library.IBandwidthGroupChangedEvent(interface=None)

	Notification when one of the bandwidth groups changed

	
id = VBoxEventType(69)

	

	
bandwidth_group

	Get IBandwidthGroup value for ‘bandwidthGroup’
The changed bandwidth group.

	
class virtualbox.library.IGuestMonitorChangedEvent(interface=None)

	Notification when the guest enables one of its monitors.

	
id = VBoxEventType(70)

	

	
change_type

	Get GuestMonitorChangedEventType value for ‘changeType’
What was changed for this guest monitor.

	
screen_id

	Get int value for ‘screenId’
The monitor which was changed.

	
origin_x

	Get int value for ‘originX’
Physical X origin relative to the primary screen.
Valid for Enabled and NewOrigin.

	
origin_y

	Get int value for ‘originY’
Physical Y origin relative to the primary screen.
Valid for Enabled and NewOrigin.

	
width

	Get int value for ‘width’
Width of the screen.
Valid for Enabled.

	
height

	Get int value for ‘height’
Height of the screen.
Valid for Enabled.

	
class virtualbox.library.IGuestUserStateChangedEvent(interface=None)

	Notification when a guest user changed its state.

	
id = VBoxEventType(92)

	

	
name

	Get str value for ‘name’
Name of the guest user whose state changed.

	
domain

	Get str value for ‘domain’
Name of the FQDN (fully qualified domain name) this user is bound
to. Optional.

	
state

	Get GuestUserState value for ‘state’
What was changed for this guest user. See GuestUserState for
more information.

	
state_details

	Get str value for ‘stateDetails’
Optional state details, depending on the state() attribute.

	
class virtualbox.library.IStorageDeviceChangedEvent(interface=None)

	Notification when a
IMachine.medium_attachments() storage device
is attached or removed.

	
id = VBoxEventType(71)

	

	
storage_device

	Get IMediumAttachment value for ‘storageDevice’
Storage device that is subject to change.

	
removed

	Get bool value for ‘removed’
Flag whether the device was removed or added to the VM.

	
silent

	Get bool value for ‘silent’
Flag whether the guest should be notified about the change.

	
class virtualbox.library.INATNetworkStartStopEvent(interface=None)

	IsStartEvent is true when NAT network is started and false on stopping.

	
id = VBoxEventType(75)

	

	
start_event

	Get bool value for ‘startEvent’
IsStartEvent is true when NAT network is started and false on stopping.

	
class virtualbox.library.IVirtualBox(interface=None, manager=None)

	The IVirtualBox interface represents the main interface exposed by the
product that provides virtual machine management.

An instance of IVirtualBox is required for the product to do anything
useful. Even though the interface does not expose this, internally,
IVirtualBox is implemented as a singleton and actually lives in the
process of the VirtualBox server (VBoxSVC.exe). This makes sure that
IVirtualBox can track the state of all virtual machines on a particular
host, regardless of which frontend started them.

To enumerate all the virtual machines on the host, use the
IVirtualBox.machines() attribute.

Error information handling is a bit special with IVirtualBox: creating
an instance will always succeed. The return of the actual error
code/information is postponed to any attribute or method call. The
reason for this is that COM likes to mutilate the error code and lose
the detailed error information returned by instance creation.

	
register_on_machine_state_changed(callback)

	Set the callback function to consume on machine state changed events.

Callback receives a IMachineStateChangedEvent object.

Returns the callback_id

	
register_on_machine_data_changed(callback)

	Set the callback function to consume on machine data changed events.

Callback receives a IMachineDataChangedEvent object.

Returns the callback_id

	
register_on_machine_registered(callback)

	Set the callback function to consume on machine registered events.

Callback receives a IMachineRegisteredEvent object.

Returns the callback_id

	
register_on_snapshot_deleted(callback)

	Set the callback function to consume on snapshot deleted events.

Callback receives a ISnapshotDeletedEvent object.

Returns the callback_id

	
register_on_snapshot_taken(callback)

	Set the callback function to consume on snapshot taken events.

Callback receives a ISnapshotTakenEvent object.

Returns the callback_id

	
register_on_snapshot_changed(callback)

	Set the callback function to consume on snapshot changed events
which occur when snapshot properties have been changed.

Callback receives a ISnapshotChangedEvent object.

Returns the callback_id

	
register_on_guest_property_changed(callback)

	Set the callback function to consume on guest property changed
events.

Callback receives a IGuestPropertyChangedEvent object.

Returns the callback_id

	
register_on_session_state_changed(callback)

	Set the callback function to consume on session state changed
events.

Callback receives a ISessionStateChangedEvent object.

Returns the callback_id

	
register_on_event_source_changed(callback)

	Set the callback function to consume on event source changed
events. This occurs when a listener is added or removed.

Callback receives a IEventSourceChangedEvent object.

Returns the callback_id

	
register_on_extra_data_changed(callback)

	Set the callback function to consume on extra data changed
events.

Callback receives a IExtraDataChangedEvent object.

Returns the callback_id

	
api_revision

	Get int value for ‘APIRevision’
To be defined exactly, but we need something that the Validation Kit
can use to figure which methods and attributes can safely be used on a
continuously changing trunk (and occasional branch).

	
api_version

	Get str value for ‘APIVersion’
A string representing the VirtualBox API version number. The format is
2 integer numbers divided by an underscore (e.g. 1_0). After the
first public release of packages with a particular API version the
API will not be changed in an incompatible way. Note that this
guarantee does not apply to development builds, and also there is no
guarantee that this version is identical to the first two integer
numbers of the package version.

	
check_firmware_present(firmware_type, version)

	Check if this VirtualBox installation has a firmware
of the given type available, either system-wide or per-user.
Optionally, this may return a hint where this firmware can be
downloaded from.

	in firmware_type of type FirmwareType

	Type of firmware to check.

	in version of type str

	Expected version number, usually empty string (presently ignored).

	out url of type str

	Suggested URL to download this firmware from.

	out file_p of type str

	Filename of firmware, only valid if result == TRUE.

	return result of type bool

	If firmware of this type and version is available.

	
compose_machine_filename(name, group, create_flags, base_folder)

	Returns a recommended full path of the settings file name for a new virtual
machine.

This API serves two purposes:

It gets called by create_machine() if @c null or
empty string (which is recommended) is specified for the
@a settingsFile argument there, which means that API should use
a recommended default file name.

It can be called manually by a client software before creating a machine,
e.g. if that client wants to pre-create the machine directory to create
virtual hard disks in that directory together with the new machine
settings file. In that case, the file name should be stripped from the
full settings file path returned by this function to obtain the
machine directory.

See IMachine.name() and create_machine() for more
details about the machine name.

@a groupName defines which additional subdirectory levels should be
included. It must be either a valid group name or @c null or empty
string which designates that the machine will not be related to a
machine group.

If @a baseFolder is a @c null or empty string (which is recommended), the
default machine settings folder
(see ISystemProperties.default_machine_folder()) will be used as
a base folder for the created machine, resulting in a file name like
“/home/user/VirtualBox VMs/name/name.vbox”. Otherwise the given base folder
will be used.

This method does not access the host disks. In particular, it does not check
for whether a machine with this name already exists.

	in name of type str

	Suggested machine name.

	in group of type str

	Machine group name for the new machine or machine group. It is
used to determine the right subdirectory.

	in create_flags of type str

	Machine creation flags, see create_machine() (optional).

	in base_folder of type str

	Base machine folder (optional).

	return file_p of type str

	Fully qualified path where the machine would be created.

	
create_appliance()

	Creates a new appliance object, which represents an appliance in the Open Virtual Machine
Format (OVF). This can then be used to import an OVF appliance into VirtualBox or to export
machines as an OVF appliance; see the documentation for IAppliance for details.

	return appliance of type IAppliance

	New appliance.

	
create_dhcp_server(name)

	Creates a DHCP server settings to be used for the given internal network name

	in name of type str

	server name

	return server of type IDHCPServer

	DHCP server settings

	raises OleErrorInvalidarg

	Host network interface @a name already exists.

	
create_machine(settings_file, name, groups, os_type_id, flags)

	
	Creates a new virtual machine by creating a machine settings file at

	the given location.

VirtualBox machine settings files use a custom XML dialect. Starting
with VirtualBox 4.0, a ”.vbox” extension is recommended, but not enforced,
and machine files can be created at arbitrary locations.

However, it is recommended that machines are created in the default
machine folder (e.g. “/home/user/VirtualBox VMs/name/name.vbox”; see
ISystemProperties.default_machine_folder()). If you specify
@c null or empty string (which is recommended) for the @a settingsFile
argument, compose_machine_filename() is called automatically
to have such a recommended name composed based on the machine name
given in the @a name argument and the primary group.

If the resulting settings file already exists, this method will fail,
unless the forceOverwrite flag is set.

The new machine is created unregistered, with the initial configuration
set according to the specified guest OS type. A typical sequence of
actions to create a new virtual machine is as follows:

Call this method to have a new machine created. The returned machine
object will be “mutable” allowing to change any machine property.

Configure the machine using the appropriate attributes and methods.

Call IMachine.save_settings() to write the settings
to the machine’s XML settings file. The configuration of the newly
created machine will not be saved to disk until this method is
called.

Call register_machine() to add the machine to the list
of machines known to VirtualBox.

The specified guest OS type identifier must match an ID of one of known
guest OS types listed in the IVirtualBox.guest_os_types()
array.

IMachine.settings_modified() will return
@c false for the created machine, until any of machine settings
are changed.

There is no way to change the name of the settings file or
subfolder of the created machine directly.

	in settings_file of type str

	Fully qualified path where the settings file should be created,
empty string or @c null for a default folder and file based on the
@a name argument and the primary group.
(see compose_machine_filename()).

	in name of type str

	Machine name.

	in groups of type str

	Array of group names. @c null or an empty array have the same
meaning as an array with just the empty string or “/”, i.e.
create a machine without group association.

	in os_type_id of type str

	Guest OS Type ID.

	in flags of type str

	Additional property parameters, passed as a comma-separated list of
“name=value” type entries. The following ones are recognized:
forceOverwrite=1 to overwrite an existing machine settings
file, UUID=<uuid> to specify a machine UUID and
directoryIncludesUUID=1 to switch to a special VM directory
naming scheme which should not be used unless necessary.

	return machine of type IMachine

	Created machine object.

	raises VBoxErrorObjectNotFound

	@a osTypeId is invalid.

	raises VBoxErrorFileError

	Resulting settings file name is invalid or the settings file already

exists or could not be created due to an I/O error.

	raises OleErrorInvalidarg

	@a name is empty or @c null.

	
create_medium(format_p, location, access_mode, a_device_type_type)

	Creates a new base medium object that will use the given storage
format and location for medium data.

The actual storage unit is not created by this method. In order to
do it, and before you are able to attach the created medium to
virtual machines, you must call one of the following methods to
allocate a format-specific storage unit at the specified location:

IMedium.create_base_storage()
IMedium.create_diff_storage()

Some medium attributes, such as IMedium.id_p() , may
remain uninitialized until the medium storage unit is successfully
created by one of the above methods.

Depending on the given device type, the file at the storage location
must be in one of the media formats understood by VirtualBox:

With a “HardDisk” device type, the file must be a hard disk image
in one of the formats supported by VirtualBox (see
ISystemProperties.medium_formats()).
After the storage unit is successfully created and this method succeeds,
if the medium is a base medium, it
will be added to the hard_disks() array attribute.
With a “DVD” device type, the file must be an ISO 9960 CD/DVD image.
After this method succeeds, the medium will be added to the
dvd_images() array attribute.
With a “Floppy” device type, the file must be an RAW floppy image.
After this method succeeds, the medium will be added to the
floppy_images() array attribute.

The list of all storage formats supported by this VirtualBox
installation can be obtained using
ISystemProperties.medium_formats() . If the @a format
attribute is empty or @c null then the default storage format
specified by ISystemProperties.default_hard_disk_format() will
be used for disks r creating a storage unit of the medium.

Note that the format of the location string is storage format specific.
See IMedium.location() and IMedium for more details.

	in format_p of type str

	Identifier of the storage format to use for the new medium.

	in location of type str

	Location of the storage unit for the new medium.

	in access_mode of type AccessMode

	Whether to open the image in read/write or read-only mode. For
a “DVD” device type, this is ignored and read-only mode is always assumed.

	in a_device_type_type of type DeviceType

	Must be one of “HardDisk”, “DVD” or “Floppy”.

	return medium of type IMedium

	Created medium object.

	raises VBoxErrorObjectNotFound

	@a format identifier is invalid. See

	raises VBoxErrorFileError

	@a location is a not valid file name (for file-based formats only).

	
create_nat_network(network_name)

	in network_name of type str

return network of type INATNetwork

	
create_shared_folder(name, host_path, writable, automount)

	Creates a new global shared folder by associating the given logical
name with the given host path, adds it to the collection of shared
folders and starts sharing it. Refer to the description of
ISharedFolder to read more about logical names.

In the current implementation, this operation is not
implemented.

	in name of type str

	Unique logical name of the shared folder.

	in host_path of type str

	Full path to the shared folder in the host file system.

	in writable of type bool

	Whether the share is writable or readonly

	in automount of type bool

	Whether the share gets automatically mounted by the guest
or not.

	
dhcp_servers

	Get IDHCPServer value for ‘DHCPServers’
DHCP servers.

	
dvd_images

	Get IMedium value for ‘DVDImages’
Array of CD/DVD image objects currently in use by this VirtualBox instance.

	
event_source

	Get IEventSource value for ‘eventSource’
Event source for VirtualBox events.

	
extension_pack_manager

	Get IExtPackManager value for ‘extensionPackManager’
The extension pack manager.

	
find_dhcp_server_by_network_name(name)

	Searches a DHCP server settings to be used for the given internal network name

	in name of type str

	server name

	return server of type IDHCPServer

	DHCP server settings

	raises OleErrorInvalidarg

	Host network interface @a name already exists.

	
find_machine(name_or_id)

	Attempts to find a virtual machine given its name or UUID.

Inaccessible machines cannot be found by name, only by UUID, because their name
cannot safely be determined.

	in name_or_id of type str

	What to search for. This can either be the UUID or the name of a virtual machine.

	return machine of type IMachine

	Machine object, if found.

	raises VBoxErrorObjectNotFound

	Could not find registered machine matching @a nameOrId.

	
find_nat_network_by_name(network_name)

	in network_name of type str

return network of type INATNetwork

	
floppy_images

	Get IMedium value for ‘floppyImages’
Array of floppy image objects currently in use by this VirtualBox instance.

	
generic_network_drivers

	Get str value for ‘genericNetworkDrivers’
Names of all generic network drivers.

	
get_extra_data(key)

	Returns associated global extra data.

If the requested data @a key does not exist, this function will
succeed and return an empty string in the @a value argument.

	in key of type str

	Name of the data key to get.

	return value of type str

	Value of the requested data key.

	raises VBoxErrorFileError

	Settings file not accessible.

	raises VBoxErrorXmlError

	Could not parse the settings file.

	
get_extra_data_keys()

	Returns an array representing the global extra data keys which currently
have values defined.

	return keys of type str

	Array of extra data keys.

	
get_guest_os_type(id_p)

	Returns an object describing the specified guest OS type.

The requested guest OS type is specified using a string which is a
mnemonic identifier of the guest operating system, such as
“win31” or “ubuntu”. The guest OS type ID of a
particular virtual machine can be read or set using the
IMachine.os_type_id() attribute.

The IVirtualBox.guest_os_types() collection contains all
available guest OS type objects. Each object has an
IGuestOSType.id_p() attribute which contains an identifier of
the guest OS this object describes.

	in id_p of type str

	Guest OS type ID string.

	return type_p of type IGuestOSType

	Guest OS type object.

	raises OleErrorInvalidarg

	@a id is not a valid Guest OS type.

	
get_machine_states(machines)

	Gets the state of several machines in a single operation.

	in machines of type IMachine

	Array with the machine references.

	return states of type MachineState

	Machine states, corresponding to the machines.

	
get_machines_by_groups(groups)

	Gets all machine references which are in one of the specified groups.

	in groups of type str

	What groups to match. The usual group list rules apply, i.e.
passing an empty list will match VMs in the toplevel group, likewise
the empty string.

	return machines of type IMachine

	All machines which matched.

	
guest_os_types

	Get IGuestOSType value for ‘guestOSTypes’

	
hard_disks

	Get IMedium value for ‘hardDisks’
Array of medium objects known to this VirtualBox installation.

This array contains only base media. All differencing
media of the given base medium can be enumerated using
IMedium.children() .

	
home_folder

	Get str value for ‘homeFolder’
Full path to the directory where the global settings file,
VirtualBox.xml, is stored.

In this version of VirtualBox, the value of this property is
always <user_dir>/.VirtualBox (where
<user_dir> is the path to the user directory,
as determined by the host OS), and cannot be changed.

This path is also used as the base to resolve relative paths in
places where relative paths are allowed (unless otherwise
expressly indicated).

	
host

	Get IHost value for ‘host’
Associated host object.

	
internal_networks

	Get str value for ‘internalNetworks’
Names of all internal networks.

	
machine_groups

	Get str value for ‘machineGroups’
Array of all machine group names which are used by the machines which
are accessible. Each group is only listed once, however they are listed
in no particular order and there is no guarantee that there are no gaps
in the group hierarchy (i.e. “/”, “/group/subgroup”
is a valid result).

	
machines

	Get IMachine value for ‘machines’
Array of machine objects registered within this VirtualBox instance.

	
nat_networks

	Get INATNetwork value for ‘NATNetworks’

	
open_machine(settings_file)

	Opens a virtual machine from the existing settings file.
The opened machine remains unregistered until you call
register_machine() .

The specified settings file name must be fully qualified.
The file must exist and be a valid machine XML settings file
whose contents will be used to construct the machine object.

IMachine.settings_modified() will return
@c false for the opened machine, until any of machine settings
are changed.

	in settings_file of type str

	Name of the machine settings file.

	return machine of type IMachine

	Opened machine object.

	raises VBoxErrorFileError

	Settings file name invalid, not found or sharing violation.

	
open_medium(location, device_type, access_mode, force_new_uuid)

	Finds existing media or opens a medium from an existing storage location.

Once a medium has been opened, it can be passed to other VirtualBox
methods, in particular to IMachine.attach_device() .

Depending on the given device type, the file at the storage location
must be in one of the media formats understood by VirtualBox:

With a “HardDisk” device type, the file must be a hard disk image
in one of the formats supported by VirtualBox (see
ISystemProperties.medium_formats()).
After this method succeeds, if the medium is a base medium, it
will be added to the hard_disks() array attribute.
With a “DVD” device type, the file must be an ISO 9960 CD/DVD image.
After this method succeeds, the medium will be added to the
dvd_images() array attribute.
With a “Floppy” device type, the file must be an RAW floppy image.
After this method succeeds, the medium will be added to the
floppy_images() array attribute.

After having been opened, the medium can be re-found by this method
and can be attached to virtual machines. See IMedium for
more details.

The UUID of the newly opened medium will either be retrieved from the
storage location, if the format supports it (e.g. for hard disk images),
or a new UUID will be randomly generated (e.g. for ISO and RAW files).
If for some reason you need to change the medium’s UUID, use
IMedium.set_ids() .

If a differencing hard disk medium is to be opened by this method, the
operation will succeed only if its parent medium and all ancestors,
if any, are already known to this VirtualBox installation (for example,
were opened by this method before).

This method attempts to guess the storage format of the specified medium
by reading medium data at the specified location.

If @a accessMode is ReadWrite (which it should be for hard disks and floppies),
the image is opened for read/write access and must have according permissions,
as VirtualBox may actually write status information into the disk’s metadata
sections.

Note that write access is required for all typical hard disk usage in VirtualBox,
since VirtualBox may need to write metadata such as a UUID into the image.
The only exception is opening a source image temporarily for copying and
cloning (see IMedium.clone_to() when the image will be closed
again soon.

The format of the location string is storage format specific. See
IMedium.location() and IMedium for more details.

	in location of type str

	Location of the storage unit that contains medium data in one of
the supported storage formats.

	in device_type of type DeviceType

	Must be one of “HardDisk”, “DVD” or “Floppy”.

	in access_mode of type AccessMode

	Whether to open the image in read/write or read-only mode. For
a “DVD” device type, this is ignored and read-only mode is always assumed.

	in force_new_uuid of type bool

	Allows the caller to request a completely new medium UUID for
the image which is to be opened. Useful if one intends to open an exact
copy of a previously opened image, as this would normally fail due to
the duplicate UUID.

	return medium of type IMedium

	Opened medium object.

	raises VBoxErrorFileError

	Invalid medium storage file location or could not find the medium

at the specified location.

	raises VBoxErrorIprtError

	Could not get medium storage format.

	raises OleErrorInvalidarg

	Invalid medium storage format.

	raises VBoxErrorInvalidObjectState

	Medium has already been added to a media registry.

	
package_type

	Get str value for ‘packageType’
A string representing the package type of this product. The
format is OS_ARCH_DIST where OS is either WINDOWS, LINUX,
SOLARIS, DARWIN. ARCH is either 32BITS or 64BITS. DIST
is either GENERIC, UBUNTU_606, UBUNTU_710, or something like
this.

	
performance_collector

	Get IPerformanceCollector value for ‘performanceCollector’
Associated performance collector object.

	
progress_operations

	Get IProgress value for ‘progressOperations’

	
register_machine(machine)

	Registers the machine previously created using
create_machine() or opened using
open_machine() within this VirtualBox installation. After
successful method invocation, the
IMachineRegisteredEvent event is fired.

This method implicitly calls IMachine.save_settings()
to save all current machine settings before registering it.

in machine of type IMachine

	raises VBoxErrorObjectNotFound

	No matching virtual machine found.

	raises VBoxErrorInvalidObjectState

	Virtual machine was not created within this VirtualBox instance.

	
register_on_extra_data_can_change(callback)

	Set the callback function to consume on extra data changed
events.

Callback receives a IExtraDataCanChangeEvent object.

Returns the callback_id

	
remove_dhcp_server(server)

	Removes the DHCP server settings

	in server of type IDHCPServer

	DHCP server settings to be removed

	raises OleErrorInvalidarg

	Host network interface @a name already exists.

	
remove_nat_network(network)

	in network of type INATNetwork

	
remove_shared_folder(name)

	Removes the global shared folder with the given name previously
created by create_shared_folder() from the collection of
shared folders and stops sharing it.

In the current implementation, this operation is not
implemented.

	in name of type str

	Logical name of the shared folder to remove.

	
revision

	Get int value for ‘revision’
The internal build revision number of the product.

	
set_extra_data(key, value)

	Sets associated global extra data.

If you pass @c null or empty string as a key @a value, the given @a key
will be deleted.

Before performing the actual data change, this method will ask all
registered event listener using the
IExtraDataCanChangeEvent
notification for a permission. If one of the listeners refuses the
new value, the change will not be performed.

On success, the
IExtraDataChangedEvent notification
is called to inform all registered listeners about a successful data
change.

	in key of type str

	Name of the data key to set.

	in value of type str

	Value to assign to the key.

	raises VBoxErrorFileError

	Settings file not accessible.

	raises VBoxErrorXmlError

	Could not parse the settings file.

	raises OleErrorAccessdenied

	Modification request refused.

	
set_settings_secret(password)

	Unlocks the secret data by passing the unlock password to the
server. The server will cache the password for that machine.

	in password of type str

	The cipher key.

	raises VBoxErrorInvalidVmState

	Virtual machine is not mutable.

	
settings_file_path

	Get str value for ‘settingsFilePath’
Full name of the global settings file.
The value of this property corresponds to the value of
home_folder() plus /VirtualBox.xml.

	
shared_folders

	Get ISharedFolder value for ‘sharedFolders’
Collection of global shared folders. Global shared folders are
available to all virtual machines.

New shared folders are added to the collection using
create_shared_folder() . Existing shared folders can be
removed using remove_shared_folder() .

In the current version of the product, global shared folders are not
implemented and therefore this collection is always empty.

	
system_properties

	Get ISystemProperties value for ‘systemProperties’
Associated system information object.

	
version

	Get str value for ‘version’
A string representing the version number of the product. The
format is 3 integer numbers divided by dots (e.g. 1.0.1). The
last number represents the build number and will frequently change.

This may be followed by a _ALPHA[0-9]*, _BETA[0-9]* or _RC[0-9]* tag
in prerelease builds. Non-Oracle builds may (/shall) also have a
publisher tag, at the end. The publisher tag starts with an underscore
just like the prerelease build type tag.

	
version_normalized

	Get str value for ‘versionNormalized’
A string representing the version number of the product,
without the publisher information (but still with other tags).
See version() .

	
class virtualbox.library.ISession(interface=None, manager=None)

	The ISession interface represents a client process and allows for locking
virtual machines (represented by IMachine objects) to prevent conflicting
changes to the machine.

Any caller wishing to manipulate a virtual machine needs to create a session
object first, which lives in its own process space. Such session objects are
then associated with IMachine objects living in the VirtualBox
server process to coordinate such changes.

There are two typical scenarios in which sessions are used:

To alter machine settings or control a running virtual machine, one
needs to lock a machine for a given session (client process) by calling
IMachine.lock_machine() .

Whereas multiple sessions may control a running virtual machine, only
one process can obtain a write lock on the machine to prevent conflicting
changes. A write lock is also needed if a process wants to actually run a
virtual machine in its own context, such as the VirtualBox GUI or
VBoxHeadless front-ends. They must also lock a machine for their own
sessions before they are allowed to power up the virtual machine.

As a result, no machine settings can be altered while another process is
already using it, either because that process is modifying machine settings
or because the machine is running.

To start a VM using one of the existing VirtualBox front-ends (e.g. the
VirtualBox GUI or VBoxHeadless), one would use
IMachine.launch_vm_process() , which also takes a session object
as its first parameter. This session then identifies the caller and lets the
caller control the started machine (for example, pause machine execution or
power it down) as well as be notified about machine execution state changes.

How sessions objects are created in a client process depends on whether you use
the Main API via COM or via the webservice:

When using the COM API directly, an object of the Session class from the
VirtualBox type library needs to be created. In regular COM C++ client code,
this can be done by calling createLocalObject(), a standard COM API.
This object will then act as a local session object in further calls to open
a session.

In the webservice, the session manager (IWebsessionManager) instead creates
a session object automatically whenever IWebsessionManager.logon()
is called. A managed object reference to that session object can be retrieved by
calling IWebsessionManager.get_session_object() .

	
console

	Get IConsole value for ‘console’
Console object associated with this session. Only sessions
which locked the machine for a VM process have a non-null console.

	
machine

	Get IMachine value for ‘machine’
Machine object associated with this session.

	
name

	Get or set str value for ‘name’
Name of this session. Important only for VM sessions, otherwise it
it will be remembered, but not used for anything significant (and can
be left at the empty string which is the default). The value can only
be changed when the session state is SessionState_Unlocked. Make sure
that you use a descriptive name which does not conflict with the VM
process session names: “GUI/Qt”, “GUI/SDL” and “headless”.

	
state

	Get SessionState value for ‘state’
Current state of this session.

	
type_p

	Get SessionType value for ‘type’
Type of this session. The value of this attribute is valid only
if the session currently has a machine locked (i.e. its
state() is Locked), otherwise an error will be returned.

	
unlock_machine()

	Unlocks a machine that was previously locked for the current session.

Calling this method is required every time a machine has been locked
for a particular session using the IMachine.launch_vm_process()
or IMachine.lock_machine() calls. Otherwise the state of
the machine will be set to MachineState.aborted on the
server, and changes made to the machine settings will be lost.

Generally, it is recommended to unlock all machines explicitly
before terminating the application (regardless of the reason for
the termination).

Do not expect the session state (ISession.state()
to return to “Unlocked” immediately after you invoke this method,
particularly if you have started a new VM process. The session
state will automatically return to “Unlocked” once the VM is no
longer executing, which can of course take a very long time.

	raises OleErrorUnexpected

	Session is not locked.

	
class virtualbox.library.IKeyboard(interface=None)

	The IKeyboard interface represents the virtual machine’s keyboard. Used
in IConsole.keyboard() .

Use this interface to send keystrokes or the Ctrl-Alt-Del sequence
to the virtual machine.

	
event_source

	Get IEventSource value for ‘eventSource’
Event source for keyboard events.

	
keyboard_le_ds

	Get KeyboardLED value for ‘keyboardLEDs’
Current status of the guest keyboard LEDs.

	
put_cad()

	Sends the Ctrl-Alt-Del sequence to the keyboard. This
function is nothing special, it is just a convenience function
calling IKeyboard.put_scancodes() with the proper scancodes.

	raises VBoxErrorIprtError

	Could not send all scan codes to virtual keyboard.

	
put_keys(press_keys=None, hold_keys=None, press_delay=50)

	Put scancodes that represent keys defined in the sequences provided.

	Arguments:

	press_keys: Press a sequence of keys

	hold_keys: While pressing the sequence of keys, hold down the keys

	defined in hold_keys.

press_delay: Number of milliseconds to delay between each press

	Note: Both press_keys and hold_keys are interable objects that yield

	self.SCANCODE.keys() keys.

	
put_scancode(scancode)

	Sends a scancode to the keyboard.

in scancode of type int

	raises VBoxErrorIprtError

	Could not send scan code to virtual keyboard.

	
put_scancodes(scancodes)

	Sends an array of scancodes to the keyboard.

in scancodes of type int

return codes_stored of type int

	raises VBoxErrorIprtError

	Could not send all scan codes to virtual keyboard.

	
release_keys()

	Causes the virtual keyboard to release any keys which are
currently pressed. Useful when host and guest keyboard may be out
of sync.

	raises VBoxErrorIprtError

	Could not release some or all keys.

	
register_on_guest_keyboard(callback)

	Set the callback function to consume on guest keyboard events

Callback receives a IGuestKeyboardEvent object.

	Example:

	
	def callback(event):

	print(event.scancodes)

	
register_key_callback(callback)

	Set a callback handler to consume decoded key events

Callback receives state and key where state is ON (1) or OFF (0) and
a string representation for that key.

	Example:

	
	def callback(state, key):

	print(“state = %s, key = %s” % (state, repr(key)))

	
class virtualbox.library.IGuestSession(interface=None)

	A guest session represents one impersonated user account in the guest, so
every operation will use the same credentials specified when creating
the session object via IGuest.create_session() .

There can be a maximum of 32 sessions at once per VM, whereas session 0
is reserved for the root session.
<!– r=bird: Is the root session part of the maximum of 32?? Not really clear. –>
This root session is controlling all other guest sessions and also is
responsible for actions which require system level privileges.

Each guest session keeps track of the guest directories and files that
it opened as well as guest processes it has created. To work on guest
files or directories a guest session offers methods to open or create
such objects (see IGuestSession.file_open() or
IGuestSession.directory_open() for instance). Similarly,
there a methods for creating guest processes.

There can be up to 2048 objects (guest processes, files and directories)
a time per guest session. Exceeding the limit will result in an error.
<!– @todo r=bird: Add specific VBOX_E_XXX error for this and document it here! –>

When done with either of these objects, including the guest session itself,
use the appropriate close() method to let the object do its cleanup work.

Closing a session via IGuestSession.close() will try to close
all the mentioned objects above unless these objects are still used by
a client.

A set of environment variables changes is associated with each session
(IGuestSession.environment_changes()). These are applied to
the base environment of the impersonated guest user when creating a new
guest process. For additional flexibility the IGuestSession.process_create()
and IGuestSession.process_create_ex() methods allows you to
specify individual environment changes for each process you create.
With newer guest addition versions, the base environment is also made
available via IGuestSession.environment_base() . (One reason
for why we record changes to a base environment instead of working
directly on an environment block is that we need to be compatible
with older guest additions. Another reason is that this way it is always
possible to undo all the changes you’ve scheduled.)

	
execute(command, arguments=None, stdin='', environment=None, flags=None, priority=ProcessPriority(1), affinity=None, timeout_ms=0)

	Execute a command in the Guest

	Arguments:

	command - Command to execute.
arguments - List of arguments for the command
stdin - A buffer to write to the stdin of the command.
environment - See IGuestSession.create_process?
flags - List of ProcessCreateFlag objects.

	Default value set to [wait_for_std_err,

	wait_for_stdout,
ignore_orphaned_processes]

	timeout_ms - ms to wait for the process to complete.

	If 0, wait for ever...

	priority - Set the ProcessPriority priority to be used for

	execution.

affinity - Process affinity to use for execution.

Return IProcess, stdout, stderr

	
makedirs(path, mode=1911)

	Super-mkdir: create a leaf directory and all intermediate ones.

	
directory_remove_recursive(path, flags=None)

	Removes a guest directory recursively.

<!– Add this back when the warning can be removed:
Unless DirectoryRemoveRecFlag.content_and_dir or
DirectoryRemoveRecFlag.content_only is given, only the
directory structure is removed. Which means it will fail if there are
directories which are not empty in the directory tree @a path points to.
–>

WARNING!! THE FLAGS ARE NOT CURRENTLY IMPLEMENTED. THE IMPLEMENTATION
WORKS AS IF FLAGS WAS SET TO DirectoryRemoveRecFlag.content_and_dir .

If the final path component is a symbolic link, this method will
fail as it can only be applied to directories.

	in path of type str

	Path of the directory that is to be removed recursively. Guest
path style.

	in flags of type DirectoryRemoveRecFlag

	Zero or more DirectoryRemoveRecFlag flags.
WARNING! SPECIFYING DirectoryRemoveRecFlag.content_and_dir IS
MANDATORY AT THE MOMENT!!

	return progress of type IProgress

	Progress object to track the operation completion. This is not implemented
yet and therefore this method call will block until deletion is completed.

	
file_exists(path, follow_symlinks=True)

	Checks whether a regular file exists in the guest or not.

	in path of type str

	Path to the alleged regular file. Guest path style.

	in follow_symlinks of type bool

	If @c true, symbolic links in the final component will be followed
and the existance of the symlink target made the question for this method.
If @c false, a symbolic link in the final component will make the
method return @c false (because a symlink isn’t a regular file).

	return exists of type bool

	Returns @c true if the file exists, @c false if not. @c false is
also return if this @a path does not point to a file object.

	raises VBoxErrorIprtError

	Error while checking existence of the file specified.

	
symlink_exists(path, follow_symlinks=True)

	Checks whether a symbolic link exists in the guest.

	in symlink of type str

	Path to the alleged symbolic link. Guest path style.

	return exists of type bool

	Returns @c true if the symbolic link exists. Returns @c false if it
does not exist, if the file system object identified by the path is
not a symbolic link, or if the object type is inaccessible to the
user, or if the @a symlink argument is empty.

	raises OleErrorNotimpl

	The method is not implemented yet.

	
directory_exists(path, follow_symlinks=True)

	Checks whether a directory exists in the guest or not.

	in path of type str

	Path to the directory to check if exists. Guest path style.

	in follow_symlinks of type bool

	If @c true, symbolic links in the final component will be followed
and the existance of the symlink target made the question for this method.
If @c false, a symbolic link in the final component will make the
method return @c false (because a symlink isn’t a directory).

	return exists of type bool

	Returns @c true if the directory exists, @c false if not.

	raises VBoxErrorIprtError

	Error while checking existence of the directory specified.

	
path_exists(path, follow_symlinks=True)

	test if path exists

	
close()

	Closes this session. All opened guest directories, files and
processes which are not referenced by clients anymore will be
closed. Guest processes which fall into this category and still
are running in the guest will be terminated automatically.

	
current_directory

	Get or set str value for ‘currentDirectory’
The current directory of the session. Guest path style.

	
directories

	Get IGuestDirectory value for ‘directories’
Returns all currently opened guest directories.

	
directory_copy(source, destination, flags)

	Recursively copies a directory from one guest location to another.

	in source of type str

	The path to the directory to copy (in the guest). Guest path style.

	in destination of type str

	The path to the target directory (in the guest). Unless the
DirectoryCopyFlags.copy_into_existing flag is given, the
directory shall not already exist. Guest path style.

	in flags of type DirectoryCopyFlags

	Zero or more DirectoryCopyFlags values.

	return progress of type IProgress

	Progress object to track the operation to completion.

	raises OleErrorNotimpl

	Not yet implemented.

	
directory_copy_from_guest(source, destination, flags)

	Recursively copies a directory from the guest to the host.

	in source of type str

	Path to the directory on the guest side that should be copied to
the host. Guest path style.

	in destination of type str

	Where to put the directory on the host. Unless the
DirectoryCopyFlags.copy_into_existing flag is given, the
directory shall not already exist. Host path style.

	in flags of type DirectoryCopyFlags

	Zero or more DirectoryCopyFlags values.

	return progress of type IProgress

	Progress object to track the operation to completion.

	raises OleErrorNotimpl

	Not yet implemented.

	
directory_copy_to_guest(source, destination, flags)

	Recursively copies a directory from the host to the guest.

	in source of type str

	Path to the directory on the host side that should be copied to
the guest. Host path style.

	in destination of type str

	Where to put the file in the guest. Unless the
DirectoryCopyFlags.copy_into_existing flag is given, the
directory shall not already exist. Guest style path.

	in flags of type DirectoryCopyFlags

	Zero or more DirectoryCopyFlags values.

	return progress of type IProgress

	Progress object to track the operation to completion.

	raises OleErrorNotimpl

	Not yet implemented.

	
directory_create(path, mode, flags)

	Creates a directory in the guest.

	in path of type str

	Path to the directory directory to be created. Guest path style.

	in mode of type int

	The UNIX-style access mode mask to create the directory with.
Whether/how all three access groups and associated access rights are
realized is guest OS dependent. The API does the best it can on each
OS.

	in flags of type DirectoryCreateFlag

	Zero or more DirectoryCreateFlag flags.

	raises VBoxErrorIprtError

	Error while creating the directory.

	
directory_create_temp(template_name, mode, path, secure)

	Creates a temporary directory in the guest.

	in template_name of type str

	Template for the name of the directory to create. This must
contain at least one ‘X’ character. The first group of consecutive
‘X’ characters in the template will be replaced by a random
alphanumeric string to produce a unique name.

	in mode of type int

	The UNIX-style access mode mask to create the directory with.
Whether/how all three access groups and associated access rights are
realized is guest OS dependent. The API does the best it can on each
OS.

This parameter is ignore if the @a secure parameter is set to @c true.
It is strongly recommended to use 0700.

	in path of type str

	The path to the directory in which the temporary directory should
be created. Guest path style.

	in secure of type bool

	Whether to fail if the directory can not be securely created.
Currently this means that another unprivileged user cannot
manipulate the path specified or remove the temporary directory
after it has been created. Also causes the mode specified to be
ignored. May not be supported on all guest types.

	return directory of type str

	On success this will contain the full path to the created
directory. Guest path style.

	raises VBoxErrorNotSupported

	The operation is not possible as requested on this particular

guest type.

	raises OleErrorInvalidarg

	Invalid argument. This includes an incorrectly formatted template,

or a non-absolute path.

	raises VBoxErrorIprtError

	The temporary directory could not be created. Possible reasons

include a non-existing path or an insecure path when the secure
option was requested.

	
directory_open(path, filter_p, flags)

	Opens a directory in the guest and creates a IGuestDirectory
object that can be used for further operations.

This method follows symbolic links by default at the moment, this
may change in the future.

	in path of type str

	Path to the directory to open. Guest path style.

	in filter_p of type str

	Optional directory listing filter to apply. This uses the DOS/NT
style wildcard characters ‘?’ and ‘*’.

	in flags of type DirectoryOpenFlag

	Zero or more DirectoryOpenFlag flags.

	return directory of type IGuestDirectory

	IGuestDirectory object containing the opened directory.

	raises VBoxErrorObjectNotFound

	Directory to open was not found.

	raises VBoxErrorIprtError

	Error while opening the directory.

	
directory_remove(path)

	Removes a guest directory if empty.

Symbolic links in the final component will not be followed,
instead an not-a-directory error is reported.

	in path of type str

	Path to the directory that should be removed. Guest path style.

	
domain

	Get str value for ‘domain’
Returns the domain name used by this session to impersonate
users in the guest.

	
environment_base

	Get str value for ‘environmentBase’
The base environment of the session. They are on the “VAR=VALUE” form,
one array entry per variable.
<!– @todo/TODO/FIXME: This doesn’t end up in the PDF.
–>

Access fails with VBOX_E_NOT_SUPPORTED if the guest additions does not
support the session base environment feature. Support for this was
introduced with protocol version XXXX.

Access fails with VBOX_E_INVALID_OBJECT_STATE if the guest additions
has yet to report the session base environment.

	
environment_changes

	Get or set str value for ‘environmentChanges’
The set of scheduled environment changes to the base environment of the
session. They are in putenv format, i.e. “VAR=VALUE” for setting and
“VAR” for unsetting. One entry per variable (change). The changes are
applied when creating new guest processes.

This is writable, so to undo all the scheduled changes, assign it an
empty array.

	
environment_does_base_variable_exist(name)

	
	Checks if the given environment variable exists in the session’s base

	environment (IGuestSession.environment_base()).

	in name of type str

	Name of the environment variable to look for. This cannot be
empty nor can it contain any equal signs.

	return exists of type bool

	TRUE if the variable exists, FALSE if not.

	raises VBoxErrorNotSupported

	If the guest additions does not

support the session base environment feature. Support for this was
introduced with protocol version XXXX.

	raises VBoxErrorInvalidObjectState

	If the guest additions has

yet to report the session base environment.

	
environment_get_base_variable(name)

	
	Gets an environment variable from the session’s base environment

	(IGuestSession.environment_base()).

	in name of type str

	Name of the environment variable to get.This cannot be empty
nor can it contain any equal signs.

	return value of type str

	The value of the variable. Empty if not found. To deal with
variables that may have empty values, use
IGuestSession.environment_does_base_variable_exist() .

	raises VBoxErrorNotSupported

	If the guest additions does not

support the session base environment feature. Support for this was
introduced with protocol version XXXX.

	raises VBoxErrorInvalidObjectState

	If the guest additions has

yet to report the session base environment.

	
environment_schedule_set(name, value)

	Schedules setting an environment variable when creating the next guest
process. This affects the IGuestSession.environment_changes()
attribute.

	in name of type str

	Name of the environment variable to set. This cannot be empty
nor can it contain any equal signs.

	in value of type str

	Value to set the session environment variable to.

	
environment_schedule_unset(name)

	Schedules unsetting (removing) an environment variable when creating
the next guest process. This affects the
IGuestSession.environment_changes() attribute.

	in name of type str

	Name of the environment variable to unset. This cannot be empty
nor can it contain any equal signs.

	
event_source

	Get IEventSource value for ‘eventSource’
Event source for guest session events.

	
file_copy(source, destination, flags)

	Copies a file from one guest location to another.

Will overwrite the destination file unless
FileCopyFlag.no_replace is specified.

	in source of type str

	The path to the file to copy (in the guest). Guest path style.

	in destination of type str

	The path to the target file (in the guest). This cannot be a
directory. Guest path style.

	in flags of type FileCopyFlag

	Zero or more FileCopyFlag values.

	return progress of type IProgress

	Progress object to track the operation to completion.

	raises OleErrorNotimpl

	Not yet implemented.

	
file_copy_from_guest(source, destination, flags)

	Copies a file from the guest to the host.

Will overwrite the destination file unless
FileCopyFlag.no_replace is specified.

	in source of type str

	Path to the file on the guest side that should be copied to the
host. Guest path style.

	in destination of type str

	Where to put the file on the host (file, not directory). Host
path style.

	in flags of type FileCopyFlag

	Zero or more FileCopyFlag values.

	return progress of type IProgress

	Progress object to track the operation to completion.

	raises VBoxErrorIprtError

	Error starting the copy operation.

	
file_copy_to_guest(source, destination, flags)

	Copies a file from the host to the guest.

Will overwrite the destination file unless
FileCopyFlag.no_replace is specified.

	in source of type str

	Path to the file on the host side that should be copied to the
guest. Host path style.

	in destination of type str

	Where to put the file in the guest (file, not directory). Guest
style path.

	in flags of type FileCopyFlag

	Zero or more FileCopyFlag values.

	return progress of type IProgress

	Progress object to track the operation to completion.

	raises VBoxErrorIprtError

	Error starting the copy operation.

	
file_create_temp(template_name, mode, path, secure)

	Creates a temporary file in the guest.

	in template_name of type str

	Template for the name of the file to create. This must contain
at least one ‘X’ character. The first group of consecutive ‘X’
characters in the template will be replaced by a random
alphanumeric string to produce a unique name.

	in mode of type int

	The UNIX-style access mode mask to create the file with.
Whether/how all three access groups and associated access rights are
realized is guest OS dependent. The API does the best it can on each
OS.

This parameter is ignore if the @a secure parameter is set to @c true.
It is strongly recommended to use 0600.

	in path of type str

	The path to the directory in which the temporary file should be
created.

	in secure of type bool

	Whether to fail if the file can not be securely created.
Currently this means that another unprivileged user cannot
manipulate the path specified or remove the temporary file after
it has been created. Also causes the mode specified to be ignored.
May not be supported on all guest types.

	return file_p of type IGuestFile

	On success this will contain an open file object for the new
temporary file.

	raises VBoxErrorNotSupported

	The operation is not possible as requested on this particular

guest OS.

	raises OleErrorInvalidarg

	Invalid argument. This includes an incorrectly formatted template,

or a non-absolute path.

	raises VBoxErrorIprtError

	The temporary file could not be created. Possible reasons include

a non-existing path or an insecure path when the secure
option was requested.

	
file_open(path, access_mode, open_action, creation_mode)

	Opens a file and creates a IGuestFile object that
can be used for further operations.

	in path of type str

	Path to file to open. Guest path style.

	in access_mode of type FileAccessMode

	The file access mode (read, write and/or append).
See FileAccessMode for details.

	in open_action of type FileOpenAction

	What action to take depending on whether the file exists or not.
See FileOpenAction for details.

	in creation_mode of type int

	The UNIX-style access mode mask to create the file with if @a openAction
requested the file to be created (otherwise ignored). Whether/how all
three access groups and associated access rights are realized is guest
OS dependent. The API does the best it can on each OS.

	return file_p of type IGuestFile

	IGuestFile object representing the opened file.

	raises VBoxErrorObjectNotFound

	File to open was not found.

	raises VBoxErrorIprtError

	Error while opening the file.

	
file_open_ex(path, access_mode, open_action, sharing_mode, creation_mode, flags)

	Opens a file and creates a IGuestFile object that
can be used for further operations, extended version.

	in path of type str

	Path to file to open. Guest path style.

	in access_mode of type FileAccessMode

	The file access mode (read, write and/or append).
See FileAccessMode for details.

	in open_action of type FileOpenAction

	What action to take depending on whether the file exists or not.
See FileOpenAction for details.

	in sharing_mode of type FileSharingMode

	The file sharing mode in the guest. This parameter is currently
ignore for all guest OSes. It will in the future be implemented for
Windows, OS/2 and maybe Solaris guests only, the others will ignore it.
Use FileSharingMode.all_p .

	in creation_mode of type int

	The UNIX-style access mode mask to create the file with if @a openAction
requested the file to be created (otherwise ignored). Whether/how all
three access groups and associated access rights are realized is guest
OS dependent. The API does the best it can on each OS.

	in flags of type FileOpenExFlags

	Zero or more FileOpenExFlags values.

	return file_p of type IGuestFile

	IGuestFile object representing the opened file.

	raises VBoxErrorObjectNotFound

	File to open was not found.

	raises VBoxErrorIprtError

	Error while opening the file.

	
file_query_size(path, follow_symlinks)

	Queries the size of a regular file in the guest.

	in path of type str

	Path to the file which size is requested. Guest path style.

	in follow_symlinks of type bool

	It @c true, symbolic links in the final path component will be
followed to their target, and the size of the target is returned.
If @c false, symbolic links in the final path component will make
the method call fail (symblink is not a regular file).

	return size of type int

	Queried file size.

	raises VBoxErrorObjectNotFound

	File to was not found.

	raises VBoxErrorIprtError

	Error querying file size.

	
files

	Get IGuestFile value for ‘files’
Returns all currently opened guest files.

	
fs_obj_exists(path, follow_symlinks)

	Checks whether a file system object (file, directory, etc) exists in
the guest or not.

	in path of type str

	Path to the file system object to check the existance of. Guest
path style.

	in follow_symlinks of type bool

	If @c true, symbolic links in the final component will be followed
and the method will instead check if the target exists.
If @c false, symbolic links in the final component will satisfy the
method and it will return @c true in @a exists.

	return exists of type bool

	Returns @c true if the file exists, @c false if not.

	raises VBoxErrorIprtError

	Error while checking existence of the file specified.

	
fs_obj_move(source, destination, flags)

	Moves a file system object (file, directory, symlink, etc) from one
guest location to another.

This differs from IGuestSession.fs_obj_rename() in that it
can move accross file system boundraries. In that case it will
perform a copy and then delete the original. For directories, this
can take a while and is subject to races.

	in source of type str

	Path to the file to move. Guest path style.

	in destination of type str

	Where to move the file to (file, not directory). Guest path
style.

	in flags of type FsObjMoveFlags

	Zero or more FsObjMoveFlags values.

	return progress of type IProgress

	Progress object to track the operation to completion.

	raises OleErrorNotimpl

	Not yet implemented.

	
fs_obj_query_info(path, follow_symlinks)

	Queries information about a file system object (file, directory, etc)
in the guest.

	in path of type str

	Path to the file system object to gather information about.
Guest path style.

	in follow_symlinks of type bool

	Information about symbolic links is returned if @c false. Otherwise,
symbolic links are followed and the returned information concerns
itself with the symlink target if @c true.

	return info of type IGuestFsObjInfo

	IGuestFsObjInfo object containing the information.

	raises VBoxErrorObjectNotFound

	The file system object was not found.

	raises VBoxErrorIprtError

	Error while querying information.

	
fs_obj_remove(path)

	Removes a file system object (file, symlink, etc) in the guest. Will
not work on directories, use IGuestSession.directory_remove()
to remove directories.

This method will remove symbolic links in the final path
component, not follow them.

	in path of type str

	Path to the file system object to remove. Guest style path.

	raises OleErrorNotimpl

	The method has not been implemented yet.

	raises VBoxErrorObjectNotFound

	The file system object was not found.

	raises VBoxErrorIprtError

	For most other errors. We know this is unhelpful, will fix shortly...

	
fs_obj_rename(old_path, new_path, flags)

	Renames a file system object (file, directory, symlink, etc) in the
guest.

	in old_path of type str

	The current path to the object. Guest path style.

	in new_path of type str

	The new path to the object. Guest path style.

	in flags of type FsObjRenameFlag

	Zero or more FsObjRenameFlag values.

	raises VBoxErrorObjectNotFound

	The file system object was not found.

	raises VBoxErrorIprtError

	For most other errors. We know this is unhelpful, will fix shortly...

	
fs_obj_set_acl(path, follow_symlinks, acl, mode)

	Sets the access control list (ACL) of a file system object (file,
directory, etc) in the guest.

	in path of type str

	Full path of the file system object which ACL to set

	in follow_symlinks of type bool

	If @c true symbolic links in the final component will be followed,
otherwise, if @c false, the method will work directly on a symbolic
link in the final component.

	in acl of type str

	The ACL specification string. To-be-defined.

	in mode of type int

	UNIX-style mode mask to use if @a acl is empty. As mention in
IGuestSession.directory_create() this is realized on
a best effort basis and the exact behavior depends on the Guest OS.

	raises OleErrorNotimpl

	The method is not implemented yet.

	
id_p

	Get int value for ‘id’
Returns the internal session ID.

	
name

	Get str value for ‘name’
Returns the session’s friendly name.

	
path_style

	Get PathStyle value for ‘pathStyle’
The style of paths used by the guest. Handy for giving the right kind
of path specifications to IGuestSession.file_open() and similar methods.

	
process_create(executable, arguments, environment_changes, flags, timeout_ms)

	Creates a new process running in the guest. The new process will be
started asynchronously, meaning on return of this function it is not
be guaranteed that the guest process is in a started state. To wait for
successful startup, use the IProcess.wait_for() call.

Starting at VirtualBox 4.2 guest process execution by is default limited
to serve up to 255 guest processes at a time. If all 255 guest processes
are active and running, creating a new guest process will result in an
error.

If ProcessCreateFlag_WaitForStdOut and/or ProcessCreateFlag_WaitForStdErr
are set, the guest process will not enter the terminated state until
all data from the specified streams have been read read.

	in executable of type str

	Full path to the file to execute in the guest. The file has to
exists in the guest VM with executable right to the session user in
order to succeed. If empty/null, the first entry in the
@a arguments array will be used instead (i.e. argv[0]).

	in arguments of type str

	Array of arguments passed to the new process.

Starting with VirtualBox 5.0 this array starts with argument 0
instead of argument 1 as in previous versions. Whether the zeroth
argument can be passed to the guest depends on the VBoxService
version running there. If you depend on this, check that the
IGuestSession.protocol_version() is 3 or higher.

	in environment_changes of type str

	Set of environment changes to complement
IGuestSession.environment_changes() . Takes precedence
over the session ones. The changes are in putenv format, i.e.
“VAR=VALUE” for setting and “VAR” for unsetting.

The changes are applied to the base environment of the impersonated
guest user (IGuestSession.environment_base()) when
creating the process. (This is done on the guest side of things in
order to be compatible with older guest additions. That is one of
the motivations for not passing in the whole environment here.)

	in flags of type ProcessCreateFlag

	Process creation flags;
see ProcessCreateFlag for more information.

	in timeout_ms of type int

	Timeout (in ms) for limiting the guest process’ running time.
Pass 0 for an infinite timeout. On timeout the guest process will be
killed and its status will be put to an appropriate value. See
ProcessStatus for more information.

	return guest_process of type IGuestProcess

	Guest process object of the newly created process.

	raises VBoxErrorIprtError

	Error creating guest process.

	
process_create_ex(executable, arguments, environment_changes, flags, timeout_ms, priority, affinity)

	Creates a new process running in the guest with the extended options
for setting the process priority and affinity.

See IGuestSession.process_create() for more information.

	in executable of type str

	Full path to the file to execute in the guest. The file has to
exists in the guest VM with executable right to the session user in
order to succeed. If empty/null, the first entry in the
@a arguments array will be used instead (i.e. argv[0]).

	in arguments of type str

	Array of arguments passed to the new process.

Starting with VirtualBox 5.0 this array starts with argument 0
instead of argument 1 as in previous versions. Whether the zeroth
argument can be passed to the guest depends on the VBoxService
version running there. If you depend on this, check that the
IGuestSession.protocol_version() is 3 or higher.

	in environment_changes of type str

	Set of environment changes to complement
IGuestSession.environment_changes() . Takes precedence
over the session ones. The changes are in putenv format, i.e.
“VAR=VALUE” for setting and “VAR” for unsetting.

The changes are applied to the base environment of the impersonated
guest user (IGuestSession.environment_base()) when
creating the process. (This is done on the guest side of things in
order to be compatible with older guest additions. That is one of
the motivations for not passing in the whole environment here.)

	in flags of type ProcessCreateFlag

	Process creation flags, see ProcessCreateFlag for
detailed description of available flags.

	in timeout_ms of type int

	Timeout (in ms) for limiting the guest process’ running time.
Pass 0 for an infinite timeout. On timeout the guest process will be
killed and its status will be put to an appropriate value. See
ProcessStatus for more information.

	in priority of type ProcessPriority

	Process priority to use for execution, see ProcessPriority
for available priority levels.
This is silently ignored if not supported by guest additions.

	in affinity of type int

	Processor affinity to set for the new process. This is a list of
guest CPU numbers the process is allowed to run on.

This is silently ignored if the guest does not support setting the
affinity of processes, or if the guest additions does not implemet
this feature.

	return guest_process of type IGuestProcess

	Guest process object of the newly created process.

	
process_get(pid)

	Gets a certain guest process by its process ID (PID).

	in pid of type int

	Process ID (PID) to get guest process for.

	return guest_process of type IGuestProcess

	Guest process of specified process ID (PID).

	
processes

	Get IGuestProcess value for ‘processes’
Returns all current guest processes.

	
protocol_version

	Get int value for ‘protocolVersion’
Returns the protocol version which is used by this session to
communicate with the guest.

	
status

	Get GuestSessionStatus value for ‘status’
Returns the current session status.

	
symlink_create(symlink, target, type_p)

	Creates a symbolic link in the guest.

	in symlink of type str

	Path to the symbolic link that should be created. Guest path
style.

	in target of type str

	The path to the symbolic link target. If not an absolute, this will
be relative to the @a symlink location at access time. Guest path
style.

	in type_p of type SymlinkType

	The symbolic link type (mainly for Windows). See SymlinkType
for more information.

	raises OleErrorNotimpl

	The method is not implemented yet.

	
symlink_read(symlink, flags)

	Reads the target value of a symbolic link in the guest.

	in symlink of type str

	Path to the symbolic link to read.

	in flags of type SymlinkReadFlag

	Zero or more SymlinkReadFlag values.

	return target of type str

	Target value of the symbolic link. Guest path style.

	raises OleErrorNotimpl

	The method is not implemented yet.

	
timeout

	Get or set int value for ‘timeout’
<!– r=bird: Using ‘Returns’ for writable attributes is misleading. –>
Returns the session timeout (in ms).

	
user

	Get str value for ‘user’
Returns the user name used by this session to impersonate
users in the guest.

	
wait_for(wait_for, timeout_ms)

	Waits for one or more events to happen.

	in wait_for of type int

	Specifies what to wait for;
see GuestSessionWaitForFlag for more information.

	in timeout_ms of type int

	Timeout (in ms) to wait for the operation to complete.
Pass 0 for an infinite timeout.

	return reason of type GuestSessionWaitResult

	The overall wait result;
see GuestSessionWaitResult for more information.

	
wait_for_array(wait_for, timeout_ms)

	Waits for one or more events to happen.
Scriptable version of wait_for() .

	in wait_for of type GuestSessionWaitForFlag

	Specifies what to wait for;
see GuestSessionWaitForFlag for more information.

	in timeout_ms of type int

	Timeout (in ms) to wait for the operation to complete.
Pass 0 for an infinite timeout.

	return reason of type GuestSessionWaitResult

	The overall wait result;
see GuestSessionWaitResult for more information.

	
class virtualbox.library.IGuest(interface=None)

	The IGuest interface represents information about the operating system
running inside the virtual machine. Used in
IConsole.guest() .

IGuest provides information about the guest operating system, whether
Guest Additions are installed and other OS-specific virtual machine
properties.

	
create_session(user, password, domain='', session_name='pyvbox', timeout_ms=0)

	Creates a new guest session for controlling the guest. The new session
will be started asynchronously, meaning on return of this function it is
not guaranteed that the guest session is in a started and/or usable state.
To wait for successful startup, use the IGuestSession.wait_for()
call.

A guest session represents one impersonated user account in the guest, so
every operation will use the same credentials specified when creating
the session object via IGuest.create_session() . Anonymous
sessions, that is, sessions without specifying a valid
user account in the guest are not allowed reasons of security.

There can be a maximum of 32 sessions at once per VM. An error will
be returned if this has been reached. <!– This should actually read:
VBOX_E_IPRT_ERROR will be return if this limit has been reached.
However, keep in mind that VBOX_E_IPRT_ERROR can be returned for about
88 unrelated reasons, so you don’t know what happend unless you parse
the error text. (bird) –>
<!– @todo r=bird: Seriously, add an dedicated VBOX_E_MAX_GUEST_SESSIONS status
for this condition. Do the same for all other maximums and things that could be
useful to the API client. –>

For more information please consult IGuestSession

	in user of type str

	User name this session will be using to control the guest; has to exist
and have the appropriate rights to execute programs in the VM. Must not
be empty.

	in password of type str

	Password of the user account to be used. Empty passwords are allowed.

	in domain of type str

	Domain name of the user account to be used if the guest is part of
a domain. Optional. This feature is not implemented yet.

	in session_name of type str

	The session’s friendly name. Optional, can be empty.

	return guest_session of type IGuestSession

	The newly created session object.

	
update_guest_additions(source=None, arguments=None, flags=None)

	Automatically updates already installed Guest Additions in a VM.

At the moment only Windows guests are supported.

Because the VirtualBox Guest Additions drivers are not WHQL-certified
yet there might be warning dialogs during the actual Guest Additions
update. These need to be confirmed manually in order to continue the
installation process. This applies to Windows 2000 and Windows XP guests
and therefore these guests can’t be updated in a fully automated fashion
without user interaction. However, to start a Guest Additions update for
the mentioned Windows versions anyway, the flag
AdditionsUpdateFlag_WaitForUpdateStartOnly can be specified. See
AdditionsUpdateFlag for more information.

	in source of type str

	Path to the Guest Additions .ISO file to use for the update.

	in arguments of type str

	Optional command line arguments to use for the Guest Additions
installer. Useful for retrofitting features which weren’t installed
before in the guest.

	in flags of type AdditionsUpdateFlag

	AdditionsUpdateFlag flags.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorNotSupported

	Guest OS is not supported for automated Guest Additions updates or the

already installed Guest Additions are not ready yet.

	raises VBoxErrorIprtError

	Error while updating.

	
additions_revision

	Get int value for ‘additionsRevision’
The internal build revision number of the installed Guest Additions.

See also IVirtualBox.revision() .

	
additions_run_level

	Get AdditionsRunLevelType value for ‘additionsRunLevel’
Current run level of the installed Guest Additions.

	
additions_version

	Get str value for ‘additionsVersion’
Version of the installed Guest Additions in the same format as
IVirtualBox.version() .

	
dn_d_source

	Get IGuestDnDSource value for ‘dnDSource’
Retrieves the drag’n drop source implementation for the guest side, that
is, handling and retrieving drag’n drop data from the guest.

	
dn_d_target

	Get IGuestDnDTarget value for ‘dnDTarget’
Retrieves the drag’n drop source implementation for the host side. This
will allow the host to handle and initiate a drag’n drop operation to copy
data from the host to the guest.

	
event_source

	Get IEventSource value for ‘eventSource’
Event source for guest events.

	
facilities

	Get IAdditionsFacility value for ‘facilities’
Returns a collection of current known facilities. Only returns facilities where
a status is known, e.g. facilities with an unknown status will not be returned.

	
find_session(session_name)

	Finds guest sessions by their friendly name and returns an interface
array with all found guest sessions.

	in session_name of type str

	The session’s friendly name to find. Wildcards like ? and * are allowed.

	return sessions of type IGuestSession

	Array with all guest sessions found matching the name specified.

	
get_additions_status(level)

	Retrieve the current status of a certain Guest Additions run level.

	in level of type AdditionsRunLevelType

	Status level to check

	return active of type bool

	Flag whether the status level has been reached or not

	raises VBoxErrorNotSupported

	Wrong status level specified.

	
get_facility_status(facility)

	Get the current status of a Guest Additions facility.

	in facility of type AdditionsFacilityType

	Facility to check status for.

	out timestamp of type int

	Timestamp (in ms) of last status update seen by the host.

	return status of type AdditionsFacilityStatus

	The current (latest) facility status.

	
internal_get_statistics()

	Internal method; do not use as it might change at any time.

	out cpu_user of type int

	Percentage of processor time spent in user mode as seen by the guest.

	out cpu_kernel of type int

	Percentage of processor time spent in kernel mode as seen by the guest.

	out cpu_idle of type int

	Percentage of processor time spent idling as seen by the guest.

	out mem_total of type int

	Total amount of physical guest RAM.

	out mem_free of type int

	Free amount of physical guest RAM.

	out mem_balloon of type int

	Amount of ballooned physical guest RAM.

	out mem_shared of type int

	Amount of shared physical guest RAM.

	out mem_cache of type int

	Total amount of guest (disk) cache memory.

	out paged_total of type int

	Total amount of space in the page file.

	out mem_alloc_total of type int

	Total amount of memory allocated by the hypervisor.

	out mem_free_total of type int

	Total amount of free memory available in the hypervisor.

	out mem_balloon_total of type int

	Total amount of memory ballooned by the hypervisor.

	out mem_shared_total of type int

	Total amount of shared memory in the hypervisor.

	
memory_balloon_size

	Get or set int value for ‘memoryBalloonSize’
Guest system memory balloon size in megabytes (transient property).

	
os_type_id

	Get str value for ‘OSTypeId’
Identifier of the Guest OS type as reported by the Guest
Additions.
You may use IVirtualBox.get_guest_os_type() to obtain
an IGuestOSType object representing details about the given
Guest OS type.

If Guest Additions are not installed, this value will be
the same as IMachine.os_type_id() .

	
sessions

	Get IGuestSession value for ‘sessions’
Returns a collection of all opened guest sessions.

	
set_credentials(user_name, password, domain, allow_interactive_logon)

	Store login credentials that can be queried by guest operating
systems with Additions installed. The credentials are transient
to the session and the guest may also choose to erase them. Note
that the caller cannot determine whether the guest operating system
has queried or made use of the credentials.

	in user_name of type str

	User name string, can be empty

	in password of type str

	Password string, can be empty

	in domain of type str

	Domain name (guest logon scheme specific), can be empty

	in allow_interactive_logon of type bool

	Flag whether the guest should alternatively allow the user to
interactively specify different credentials. This flag might
not be supported by all versions of the Additions.

	raises VBoxErrorVmError

	VMM device is not available.

	
statistics_update_interval

	Get or set int value for ‘statisticsUpdateInterval’
Interval to update guest statistics in seconds.

	
class virtualbox.library.IGuestProcess(interface=None)

	Implementation of the IProcess object
for processes the host has started in the guest.

	
arguments

	Get str value for ‘arguments’
The arguments this process is using for execution.

	
environment

	Get str value for ‘environment’
The initial process environment. Not yet implemented.

	
event_source

	Get IEventSource value for ‘eventSource’
Event source for process events.

	
executable_path

	Get str value for ‘executablePath’
Full path of the actual executable image.

	
exit_code

	Get int value for ‘exitCode’
The exit code. Only available when the process has been
terminated normally.

	
name

	Get str value for ‘name’
The friendly name of this process.

	
pid

	Get int value for ‘PID’
The process ID (PID).

	
read(handle, to_read, timeout_ms)

	Reads data from a running process.

	in handle of type int

	Handle to read from. Usually 0 is stdin.

	in to_read of type int

	Number of bytes to read.

	in timeout_ms of type int

	Timeout (in ms) to wait for the operation to complete.
Pass 0 for an infinite timeout.

	return data of type str

	Array of data read.

	
status

	Get ProcessStatus value for ‘status’
The current process status; see ProcessStatus
for more information.

	
terminate()

	Terminates (kills) a running process.
It can take up to 30 seconds to get a guest process killed. In
case a guest process could not be killed an appropriate error is
returned.

	
wait_for(wait_for, timeout_ms=0)

	Abstract parent interface for processes handled by VirtualBox.

	
wait_for_array(wait_for, timeout_ms)

	Waits for one or more events to happen.
Scriptable version of wait_for() .

	in wait_for of type ProcessWaitForFlag

	Specifies what to wait for;
see ProcessWaitForFlag for more information.

	in timeout_ms of type int

	Timeout (in ms) to wait for the operation to complete.
Pass 0 for an infinite timeout.

	return reason of type ProcessWaitResult

	The overall wait result;
see ProcessWaitResult for more information.

	
write(handle, flags, data, timeout_ms)

	Writes data to a running process.

	in handle of type int

	Handle to write to. Usually 0 is stdin, 1 is stdout and 2 is stderr.

	in flags of type int

	A combination of ProcessInputFlag flags.

	in data of type str

	Array of bytes to write. The size of the array also specifies
how much to write.

	in timeout_ms of type int

	Timeout (in ms) to wait for the operation to complete.
Pass 0 for an infinite timeout.

	return written of type int

	How much bytes were written.

	
write_array(handle, flags, data, timeout_ms)

	Writes data to a running process.
Scriptable version of write() .

	in handle of type int

	Handle to write to. Usually 0 is stdin, 1 is stdout and 2 is stderr.

	in flags of type ProcessInputFlag

	A combination of ProcessInputFlag flags.

	in data of type str

	Array of bytes to write. The size of the array also specifies
how much to write.

	in timeout_ms of type int

	Timeout (in ms) to wait for the operation to complete.
Pass 0 for an infinite timeout.

	return written of type int

	How much bytes were written.

	
class virtualbox.library.IMachine(interface=None)

	The IMachine interface represents a virtual machine, or guest, created
in VirtualBox.

This interface is used in two contexts. First of all, a collection of
objects implementing this interface is stored in the
IVirtualBox.machines() attribute which lists all the virtual
machines that are currently registered with this VirtualBox
installation. Also, once a session has been opened for the given virtual
machine (e.g. the virtual machine is running), the machine object
associated with the open session can be queried from the session object;
see ISession for details.

The main role of this interface is to expose the settings of the virtual
machine and provide methods to change various aspects of the virtual
machine’s configuration. For machine objects stored in the
IVirtualBox.machines() collection, all attributes are
read-only unless explicitly stated otherwise in individual attribute
and method descriptions.

In order to change a machine setting, a session for this machine must be
opened using one of the IMachine.lock_machine() or
IMachine.launch_vm_process() methods. After the
machine has been successfully locked for a session, a mutable machine object
needs to be queried from the session object and then the desired settings
changes can be applied to the returned object using IMachine attributes and
methods. See the ISession interface description for more
information about sessions.

Note that IMachine does not provide methods to control virtual machine
execution (such as start the machine, or power it down) – these methods
are grouped in a separate interface called IConsole .

ISession , IConsole

	
accelerate2_d_video_enabled

	Get or set bool value for ‘accelerate2DVideoEnabled’
This setting determines whether VirtualBox allows this machine to make
use of the 2D video acceleration support available on the host.

	
accelerate3_d_enabled

	Get or set bool value for ‘accelerate3DEnabled’
This setting determines whether VirtualBox allows this machine to make
use of the 3D graphics support available on the host.

	
access_error

	Get IVirtualBoxErrorInfo value for ‘accessError’
Error information describing the reason of machine
inaccessibility.

Reading this property is only valid after the last call to
accessible() returned @c false (i.e. the
machine is currently inaccessible). Otherwise, a @c null
IVirtualBoxErrorInfo object will be returned.

	
accessible

	Get bool value for ‘accessible’
Whether this virtual machine is currently accessible or not.

A machine is always deemed accessible unless it is registered and
its settings file cannot be read or parsed (either because the file itself
is unavailable or has invalid XML contents).

Every time this property is read, the accessibility state of
this machine is re-evaluated. If the returned value is @c false,
the access_error() property may be used to get the
detailed error information describing the reason of
inaccessibility, including XML error messages.

When the machine is inaccessible, only the following properties
can be used on it:

parent()
id_p()
settings_file_path()
accessible()
access_error()

An attempt to access any other property or method will return
an error.

The only possible action you can perform on an inaccessible
machine is to unregister it using the
IMachine.unregister() call (or, to check
for the accessibility state once more by querying this
property).

In the current implementation, once this property returns
@c true, the machine will never become inaccessible
later, even if its settings file cannot be successfully
read/written any more (at least, until the VirtualBox
server is restarted). This limitation may be removed in
future releases.

	
add_storage_controller(name, connection_type)

	Adds a new storage controller (SCSI, SAS or SATA controller) to the
machine and returns it as an instance of
IStorageController .

@a name identifies the controller for subsequent calls such as
get_storage_controller_by_name() ,
get_storage_controller_by_instance() ,
remove_storage_controller() ,
attach_device() or mount_medium() .

After the controller has been added, you can set its exact
type by setting the IStorageController.controller_type() .

in name of type str

in connection_type of type StorageBus

return controller of type IStorageController

	raises VBoxErrorObjectInUse

	A storage controller with given name exists already.

	raises OleErrorInvalidarg

	Invalid @a controllerType.

	
add_usb_controller(name, type_p)

	Adds a new USB controller to the machine and returns it as an instance of
IUSBController .

in name of type str

in type_p of type USBControllerType

return controller of type IUSBController

	raises VBoxErrorObjectInUse

	A USB controller with given type exists already.

	raises OleErrorInvalidarg

	Invalid @a controllerType.

	
adopt_saved_state(saved_state_file)

	Associates the given saved state file to the virtual machine.

On success, the machine will go to the Saved state. Next time it is
powered up, it will be restored from the adopted saved state and
continue execution from the place where the saved state file was
created.

The specified saved state file path may be absolute or relative to the
folder the VM normally saves the state to (usually,
snapshot_folder()).

It’s a caller’s responsibility to make sure the given saved state
file is compatible with the settings of this virtual machine that
represent its virtual hardware (memory size, storage disk configuration
etc.). If there is a mismatch, the behavior of the virtual machine
is undefined.

	in saved_state_file of type str

	Path to the saved state file to adopt.

	raises VBoxErrorInvalidVmState

	Virtual machine state neither PoweredOff nor Aborted.

	
allow_tracing_to_access_vm

	Get or set bool value for ‘allowTracingToAccessVM’
Enables tracepoints in PDM devices and drivers to use the VMCPU or VM
structures when firing off trace points. This is especially useful
with DTrace tracepoints, as it allows you to use the VMCPU or VM
pointer to obtain useful information such as guest register state.

This is disabled by default because devices and drivers normally has no
business accessing the VMCPU or VM structures, and are therefore unable
to get any pointers to these.

	
apply_defaults(flags)

	Applies the defaults for the configured guest OS type. This is
primarily for getting sane settings straight after creating a
new VM, but it can also be applied later.

This is primarily a shortcut, centralizing the tedious job of
getting the recommended settings and translating them into
settings updates. The settings are made at the end of the call,
but not saved.

	in flags of type str

	Additional flags, to be defined later.

	raises OleErrorNotimpl

	This method is not implemented yet.

	
attach_device(name, controller_port, device, type_p, medium)

	
	Attaches a device and optionally mounts a medium to the given storage

	controller (IStorageController , identified by @a name),
at the indicated port and device.

This method is intended for managing storage devices in general while a
machine is powered off. It can be used to attach and detach fixed
and removable media. The following kind of media can be attached
to a machine:

For fixed and removable media, you can pass in a medium that was
previously opened using IVirtualBox.open_medium() .

Only for storage devices supporting removable media (such as
DVDs and floppies), you can also specify a null pointer to
indicate an empty drive or one of the medium objects listed
in the IHost.dvd_drives() and IHost.floppy_drives()
arrays to indicate a host drive.
For removable devices, you can also use IMachine.mount_medium()
to change the media while the machine is running.

In a VM’s default configuration of virtual machines, the secondary
master of the IDE controller is used for a CD/DVD drive.

After calling this returns successfully, a new instance of
IMediumAttachment will appear in the machine’s list of medium
attachments (see IMachine.medium_attachments()).

See IMedium and IMediumAttachment for more
information about attaching media.

The specified device slot must not have a device attached to it,
or this method will fail.

You cannot attach a device to a newly created machine until
this machine’s settings are saved to disk using
save_settings() .

If the medium is being attached indirectly, a new differencing medium
will implicitly be created for it and attached instead. If the
changes made to the machine settings (including this indirect
attachment) are later cancelled using discard_settings() ,
this implicitly created differencing medium will implicitly
be deleted.

	in name of type str

	Name of the storage controller to attach the device to.

	in controller_port of type int

	Port to attach the device to. For an IDE controller, 0 specifies
the primary controller and 1 specifies the secondary controller.
For a SCSI controller, this must range from 0 to 15; for a SATA controller,
from 0 to 29; for an SAS controller, from 0 to 7.

	in device of type int

	Device slot in the given port to attach the device to. This is only
relevant for IDE controllers, for which 0 specifies the master device and
1 specifies the slave device. For all other controller types, this must
be 0.

	in type_p of type DeviceType

	Device type of the attached device. For media opened by
IVirtualBox.open_medium() , this must match the device type
specified there.

	in medium of type IMedium

	Medium to mount or @c null for an empty drive.

	raises OleErrorInvalidarg

	SATA device, SATA port, IDE port or IDE slot out of range, or

file or UUID not found.

	raises VBoxErrorInvalidObjectState

	Machine must be registered before media can be attached.

	raises VBoxErrorInvalidVmState

	Invalid machine state.

	raises VBoxErrorObjectInUse

	A medium is already attached to this or another virtual machine.

	
attach_device_without_medium(name, controller_port, device, type_p)

	
	Attaches a device and optionally mounts a medium to the given storage

	controller (IStorageController , identified by @a name),
at the indicated port and device.

This method is intended for managing storage devices in general while a
machine is powered off. It can be used to attach and detach fixed
and removable media. The following kind of media can be attached
to a machine:

For fixed and removable media, you can pass in a medium that was
previously opened using IVirtualBox.open_medium() .

Only for storage devices supporting removable media (such as
DVDs and floppies) with an empty drive or one of the medium objects listed
in the IHost.dvd_drives() and IHost.floppy_drives()
arrays to indicate a host drive.
For removable devices, you can also use IMachine.mount_medium()
to change the media while the machine is running.

In a VM’s default configuration of virtual machines, the secondary
master of the IDE controller is used for a CD/DVD drive.
IMediumAttachment will appear in the machine’s list of medium
attachments (see IMachine.medium_attachments()).

See IMedium and IMediumAttachment for more
information about attaching media.

The specified device slot must not have a device attached to it,
or this method will fail.

You cannot attach a device to a newly created machine until
this machine’s settings are saved to disk using
save_settings() .

If the medium is being attached indirectly, a new differencing medium
will implicitly be created for it and attached instead. If the
changes made to the machine settings (including this indirect
attachment) are later cancelled using discard_settings() ,
this implicitly created differencing medium will implicitly
be deleted.

	in name of type str

	Name of the storage controller to attach the device to.

	in controller_port of type int

	Port to attach the device to. For an IDE controller, 0 specifies
the primary controller and 1 specifies the secondary controller.
For a SCSI controller, this must range from 0 to 15; for a SATA controller,
from 0 to 29; for an SAS controller, from 0 to 7.

	in device of type int

	Device slot in the given port to attach the device to. This is only
relevant for IDE controllers, for which 0 specifies the master device and
1 specifies the slave device. For all other controller types, this must
be 0.

	in type_p of type DeviceType

	Device type of the attached device. For media opened by
IVirtualBox.open_medium() , this must match the device type
specified there.

	raises OleErrorInvalidarg

	SATA device, SATA port, IDE port or IDE slot out of range, or

file or UUID not found.

	raises VBoxErrorInvalidObjectState

	Machine must be registered before media can be attached.

	raises VBoxErrorInvalidVmState

	Invalid machine state.

	raises VBoxErrorObjectInUse

	A medium is already attached to this or another virtual machine.

	
attach_host_pci_device(host_address, desired_guest_address, try_to_unbind)

	Attaches host PCI device with the given (host) PCI address to the
PCI bus of the virtual machine. Please note, that this operation
is two phase, as real attachment will happen when VM will start,
and most information will be delivered as IHostPCIDevicePlugEvent
on IVirtualBox event source.

IHostPCIDevicePlugEvent

	in host_address of type int

	Address of the host PCI device.

	in desired_guest_address of type int

	Desired position of this device on guest PCI bus.

	in try_to_unbind of type bool

	If VMM shall try to unbind existing drivers from the
device before attaching it to the guest.

	raises VBoxErrorInvalidVmState

	Virtual machine state is not stopped (PCI hotplug not yet implemented).

	raises VBoxErrorPdmError

	Virtual machine does not have a PCI controller allowing attachment of physical devices.

	raises VBoxErrorNotSupported

	Hardware or host OS doesn’t allow PCI device passthrough.

	
audio_adapter

	Get IAudioAdapter value for ‘audioAdapter’
Associated audio adapter, always present.

	
autostart_delay

	Get or set int value for ‘autostartDelay’
Number of seconds to wait until the VM should be started during system boot.

	
autostart_enabled

	Get or set bool value for ‘autostartEnabled’
Enables autostart of the VM during system boot.

	
autostop_type

	Get or set AutostopType value for ‘autostopType’
Action type to do when the system is shutting down.

	
bandwidth_control

	Get IBandwidthControl value for ‘bandwidthControl’
Bandwidth control manager.

	
bios_settings

	Get IBIOSSettings value for ‘BIOSSettings’
Object containing all BIOS settings.

	
can_show_console_window()

	Returns @c true if the VM console process can activate the
console window and bring it to foreground on the desktop of
the host PC.

This method will fail if a session for this machine is not
currently open.

	return can_show of type bool

	@c true if the console window can be shown and @c false otherwise.

	raises VBoxErrorInvalidVmState

	Machine session is not open.

	
chipset_type

	Get or set ChipsetType value for ‘chipsetType’
Chipset type used in this VM.

	
clipboard_mode

	Get or set ClipboardMode value for ‘clipboardMode’
Synchronization mode between the host OS clipboard
and the guest OS clipboard.

	
clone(snapshot_name_or_id=None, mode=CloneMode(1), options=None, name=None, uuid=None, groups=None, basefolder='', register=True)

	Clone this Machine

	Options:

	snapshot_name_or_id - value can be either ISnapshot, name, or id
mode - set the CloneMode value
options - define the CloneOptions options
name - define a name of the new VM
uuid - set the uuid of the new VM
groups - specify which groups the new VM will exist under
basefolder - specify which folder to set the VM up under
register - register this VM with the server

	Note: Default values create a linked clone from the current machine

	state

Return a IMachine object for the newly cloned vm

	
clone_to(target, mode, options)

	Creates a clone of this machine, either as a full clone (which means
creating independent copies of the hard disk media, save states and so
on), or as a linked clone (which uses its own differencing media,
sharing the parent media with the source machine).

The target machine object must have been created previously with IVirtualBox.create_machine() , and all the settings will be
transferred except the VM name and the hardware UUID. You can set the
VM name and the new hardware UUID when creating the target machine. The
network MAC addresses are newly created for all enabled network
adapters. You can change that behaviour with the options parameter.
The operation is performed asynchronously, so the machine object will
be not be usable until the @a progress object signals completion.

	in target of type IMachine

	Target machine object.

	in mode of type CloneMode

	Which states should be cloned.

	in options of type CloneOptions

	Options for the cloning operation.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises OleErrorInvalidarg

	@a target is @c null.

	
cpu_count

	Get or set int value for ‘CPUCount’
Number of virtual CPUs in the VM.

	
cpu_execution_cap

	Get or set int value for ‘CPUExecutionCap’
Means to limit the number of CPU cycles a guest can use. The unit
is percentage of host CPU cycles per second. The valid range
is 1 - 100. 100 (the default) implies no limit.

	
cpu_hot_plug_enabled

	Get or set bool value for ‘CPUHotPlugEnabled’
This setting determines whether VirtualBox allows CPU
hotplugging for this machine.

	
cpu_profile

	Get or set str value for ‘CPUProfile’
Experimental feature to select the guest CPU profile. The default
is “host”, which indicates the host CPU. All other names are subject
to change.

The profiles are found in src/VBox/VMM/VMMR3/cpus/.

	
cpuid_portability_level

	Get or set int value for ‘CPUIDPortabilityLevel’
Virtual CPUID portability level, the higher number the fewer newer
or vendor specific CPU feature is reported to the guest (via the CPUID
instruction). The default level of zero (0) means that all virtualized
feautres supported by the host is pass thru to the guest. While the
three (3) is currently the level supressing the most features.

Exactly which of the CPUID features are left out by the VMM at which
level is subject to change with each major version.

	
create_session(lock_type=LockType(1), session=None)

	Lock this machine

	Arguments:

	lock_type - see IMachine.lock_machine for details
session - optionally define a session object to lock this machine

against. If not defined, a new ISession object is
created to lock against

return an ISession object

	
create_shared_folder(name, host_path, writable, automount)

	Creates a new permanent shared folder by associating the given logical
name with the given host path, adds it to the collection of shared
folders and starts sharing it. Refer to the description of
ISharedFolder to read more about logical names.

	in name of type str

	Unique logical name of the shared folder.

	in host_path of type str

	Full path to the shared folder in the host file system.

	in writable of type bool

	Whether the share is writable or read-only.

	in automount of type bool

	Whether the share gets automatically mounted by the guest
or not.

	raises VBoxErrorObjectInUse

	Shared folder already exists.

	raises VBoxErrorFileError

	Shared folder @a hostPath not accessible.

	
current_snapshot

	Get ISnapshot value for ‘currentSnapshot’
Current snapshot of this machine. This is @c null if the machine
currently has no snapshots. If it is not @c null, then it was
set by one of take_snapshot() , delete_snapshot()
or restore_snapshot() , depending on which was called last.
See ISnapshot for details.

	
current_state_modified

	Get bool value for ‘currentStateModified’
Returns @c true if the current state of the machine is not
identical to the state stored in the current snapshot.

The current state is identical to the current snapshot only
directly after one of the following calls are made:

restore_snapshot()

take_snapshot() (issued on a “powered off” or “saved”
machine, for which settings_modified() returns @c false)

The current state remains identical until one of the following
happens:

settings of the machine are changed
the saved state is deleted
the current snapshot is deleted
an attempt to execute the machine is made

For machines that don’t have snapshots, this property is
always @c false.

	
default_frontend

	Get or set str value for ‘defaultFrontend’
Selects which VM frontend should be used by default when launching
this VM through the IMachine.launch_vm_process() method.
Empty or @c null strings do not define a particular default, it is up
to IMachine.launch_vm_process() to select one. See the
description of IMachine.launch_vm_process() for the valid
frontend types.

This per-VM setting overrides the default defined by
ISystemProperties.default_frontend() attribute, and is
overridden by a frontend type passed to
IMachine.launch_vm_process() .

	
delete_config(media)

	Deletes the files associated with this machine from disk. If medium objects are passed
in with the @a aMedia argument, they are closed and, if closing was successful, their
storage files are deleted as well. For convenience, this array of media files can be
the same as the one returned from a previous unregister() call.

This method must only be called on machines which are either write-locked (i.e. on instances
returned by ISession.machine()) or on unregistered machines (i.e. not yet
registered machines created by IVirtualBox.create_machine() or opened by
IVirtualBox.open_machine() , or after having called unregister()).

The following files will be deleted by this method:

If unregister() had been previously called with a @a cleanupMode
argument other than “UnregisterOnly”, this will delete all saved state files that
the machine had in use; possibly one if the machine was in “Saved” state and one
for each online snapshot that the machine had.
On each medium object passed in the @a aMedia array, this will call
IMedium.close() . If that succeeds, this will attempt to delete the
medium’s storage on disk. Since the IMedium.close() call will fail if the medium is still
in use, e.g. because it is still attached to a second machine; in that case the
storage will not be deleted.
Finally, the machine’s own XML file will be deleted.

Since deleting large disk image files can be a time-consuming I/O operation, this
method operates asynchronously and returns an IProgress object to allow the caller
to monitor the progress. There will be one sub-operation for each file that is
being deleted (saved state or medium storage file).

settings_modified() will return @c true after this
method successfully returns.

	in media of type IMedium

	List of media to be closed and whose storage files will be deleted.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorInvalidVmState

	Machine is registered but not write-locked.

	raises VBoxErrorIprtError

	Could not delete the settings file.

	
delete_guest_property(name)

	Deletes an entry from the machine’s guest property store.

	in name of type str

	The name of the property to delete.

	raises VBoxErrorInvalidVmState

	Machine session is not open.

	
delete_snapshot(id_p)

	
	Starts deleting the specified snapshot asynchronously.

	See ISnapshot for an introduction to snapshots.

The execution state and settings of the associated machine stored in
the snapshot will be deleted. The contents of all differencing media of
this snapshot will be merged with the contents of their dependent child
media to keep the medium chain valid (in other words, all changes
represented by media being deleted will be propagated to their child
medium). After that, this snapshot’s differencing medium will be
deleted. The parent of this snapshot will become a new parent for all
its child snapshots.

If the deleted snapshot is the current one, its parent snapshot will
become a new current snapshot. The current machine state is not directly
affected in this case, except that currently attached differencing
media based on media of the deleted snapshot will be also merged as
described above.

If the deleted snapshot is the first or current snapshot, then the
respective IMachine attributes will be adjusted. Deleting the current
snapshot will also implicitly call save_settings()
to make all current machine settings permanent.

Deleting a snapshot has the following preconditions:

Child media of all normal media of the deleted snapshot
must be accessible (see IMedium.state()) for this
operation to succeed. If only one running VM refers to all images
which participates in merging the operation can be performed while
the VM is running. Otherwise all virtual machines whose media are
directly or indirectly based on the media of deleted snapshot must
be powered off. In any case, online snapshot deleting usually is
slower than the same operation without any running VM.

You cannot delete the snapshot if a medium attached to it has
more than one child medium (differencing images) because otherwise
merging would be impossible. This might be the case if there is
more than one child snapshot or differencing images were created
for other reason (e.g. implicitly because of multiple machine
attachments).

The virtual machine’s state() state is
changed to “DeletingSnapshot”, “DeletingSnapshotOnline” or
“DeletingSnapshotPaused” while this operation is in progress.

Merging medium contents can be very time and disk space
consuming, if these media are big in size and have many
children. However, if the snapshot being deleted is the last
(head) snapshot on the branch, the operation will be rather
quick.

	in id_p of type str

	UUID of the snapshot to delete.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorInvalidVmState

	The running virtual machine prevents deleting this snapshot. This

happens only in very specific situations, usually snapshots can be
deleted without trouble while a VM is running. The error message
text explains the reason for the failure.

	
delete_snapshot_and_all_children(id_p)

	
	Starts deleting the specified snapshot and all its children

	asynchronously. See ISnapshot for an introduction to
snapshots. The conditions and many details are the same as with
delete_snapshot() .

This operation is very fast if the snapshot subtree does not include
the current state. It is still significantly faster than deleting the
snapshots one by one if the current state is in the subtree and there
are more than one snapshots from current state to the snapshot which
marks the subtree, since it eliminates the incremental image merging.

This API method is right now not implemented!

	in id_p of type str

	UUID of the snapshot to delete, including all its children.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorInvalidVmState

	The running virtual machine prevents deleting this snapshot. This

happens only in very specific situations, usually snapshots can be
deleted without trouble while a VM is running. The error message
text explains the reason for the failure.

	raises OleErrorNotimpl

	The method is not implemented yet.

	
delete_snapshot_range(start_id, end_id)

	
	Starts deleting the specified snapshot range. This is limited to

	linear snapshot lists, which means there may not be any other child
snapshots other than the direct sequence between the start and end
snapshot. If the start and end snapshot point to the same snapshot this
method is completely equivalent to delete_snapshot() . See
ISnapshot for an introduction to snapshots. The
conditions and many details are the same as with
delete_snapshot() .

This operation is generally faster than deleting snapshots one by one
and often also needs less extra disk space before freeing up disk space
by deleting the removed disk images corresponding to the snapshot.

This API method is right now not implemented!

	in start_id of type str

	UUID of the first snapshot to delete.

	in end_id of type str

	UUID of the last snapshot to delete.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorInvalidVmState

	The running virtual machine prevents deleting this snapshot. This

happens only in very specific situations, usually snapshots can be
deleted without trouble while a VM is running. The error message
text explains the reason for the failure.

	raises OleErrorNotimpl

	The method is not implemented yet.

	
description

	Get or set str value for ‘description’
Description of the virtual machine.

The description attribute can contain any text and is
typically used to describe the hardware and software
configuration of the virtual machine in detail (i.e. network
settings, versions of the installed software and so on).

	
detach_device(name, controller_port, device)

	Detaches the device attached to a device slot of the specified bus.

Detaching the device from the virtual machine is deferred. This means
that the medium remains associated with the machine when this method
returns and gets actually de-associated only after a successful
save_settings() call. See IMedium
for more detailed information about attaching media.

You cannot detach a device from a running machine.

Detaching differencing media implicitly created by attach_device() for the indirect attachment using this
method will not implicitly delete them. The
IMedium.delete_storage() operation should be
explicitly performed by the caller after the medium is successfully
detached and the settings are saved with
save_settings() , if it is the desired action.

	in name of type str

	Name of the storage controller to detach the medium from.

	in controller_port of type int

	Port number to detach the medium from.

	in device of type int

	Device slot number to detach the medium from.

	raises VBoxErrorInvalidVmState

	Attempt to detach medium from a running virtual machine.

	raises VBoxErrorObjectNotFound

	No medium attached to given slot/bus.

	raises VBoxErrorNotSupported

	Medium format does not support storage deletion (only for implicitly

created differencing media, should not happen).

	
detach_host_pci_device(host_address)

	Detach host PCI device from the virtual machine.
Also HostPCIDevicePlugEvent on IVirtualBox event source
will be delivered. As currently we don’t support hot device
unplug, IHostPCIDevicePlugEvent event is delivered immediately.

IHostPCIDevicePlugEvent

	in host_address of type int

	Address of the host PCI device.

	raises VBoxErrorInvalidVmState

	Virtual machine state is not stopped (PCI hotplug not yet implemented).

	raises VBoxErrorObjectNotFound

	This host device is not attached to this machine.

	raises VBoxErrorPdmError

	Virtual machine does not have a PCI controller allowing attachment of physical devices.

	raises VBoxErrorNotSupported

	Hardware or host OS doesn’t allow PCI device passthrough.

	
discard_saved_state(f_remove_file)

	Forcibly resets the machine to “Powered Off” state if it is
currently in the “Saved” state (previously created by save_state()).
Next time the machine is powered up, a clean boot will occur.

This operation is equivalent to resetting or powering off
the machine without doing a proper shutdown of the guest
operating system; as with resetting a running phyiscal
computer, it can can lead to data loss.

If @a fRemoveFile is @c true, the file in the machine directory
into which the machine state was saved is also deleted. If
this is @c false, then the state can be recovered and later
re-inserted into a machine using adopt_saved_state() .
The location of the file can be found in the
state_file_path() attribute.

	in f_remove_file of type bool

	Whether to also remove the saved state file.

	raises VBoxErrorInvalidVmState

	Virtual machine not in state Saved.

	
discard_settings()

	Discards any changes to the machine settings made since the session
has been opened or since the last call to save_settings()
or discard_settings() .

Calling this method is only valid on instances returned
by ISession.machine() and on new machines
created by IVirtualBox.create_machine() or
opened by IVirtualBox.open_machine() but not
yet registered, or on unregistered machines after calling
IMachine.unregister() .

	raises VBoxErrorInvalidVmState

	Virtual machine is not mutable.

	
dn_d_mode

	Get or set DnDMode value for ‘dnDMode’
Sets or retrieves the current drag’n drop mode.

	
emulated_usb_card_reader_enabled

	Get or set bool value for ‘emulatedUSBCardReaderEnabled’

	
enumerate_guest_properties(patterns)

	Return a list of the guest properties matching a set of patterns along
with their values, time stamps and flags.

	in patterns of type str

	The patterns to match the properties against, separated by ‘|’
characters. If this is empty or @c null, all properties will match.

	out names of type str

	The names of the properties returned.

	out values of type str

	The values of the properties returned. The array entries match the
corresponding entries in the @a name array.

	out timestamps of type int

	The time stamps of the properties returned. The array entries match
the corresponding entries in the @a name array.

	out flags of type str

	The flags of the properties returned. The array entries match the
corresponding entries in the @a name array.

	
export_to(appliance, location)

	Exports the machine to an OVF appliance. See IAppliance for the
steps required to export VirtualBox machines to OVF.

	in appliance of type IAppliance

	Appliance to export this machine to.

	in location of type str

	The target location.

	return description of type IVirtualSystemDescription

	VirtualSystemDescription object which is created for this machine.

	
fault_tolerance_address

	Get or set str value for ‘faultToleranceAddress’
The address the fault tolerance source or target.

	
fault_tolerance_password

	Get or set str value for ‘faultTolerancePassword’
The password to check for on the standby VM. This is just a
very basic measure to prevent simple hacks and operators accidentally
choosing the wrong standby VM.

	
fault_tolerance_port

	Get or set int value for ‘faultTolerancePort’
The TCP port the fault tolerance source or target will use for
communication.

	
fault_tolerance_state

	Get or set FaultToleranceState value for ‘faultToleranceState’
Fault tolerance state; disabled, source or target.
This property can be changed at any time. If you change it for a running
VM, then the fault tolerance address and port must be set beforehand.

	
fault_tolerance_sync_interval

	Get or set int value for ‘faultToleranceSyncInterval’
The interval in ms used for syncing the state between source and target.

	
find_snapshot(name_or_id)

	Returns a snapshot of this machine with the given name or UUID.

Returns a snapshot of this machine with the given UUID.
A @c null argument can be used to obtain the first snapshot
taken on this machine. To traverse the whole tree of snapshots
starting from the root, inspect the root snapshot’s
ISnapshot.children() attribute and recurse over those children.

	in name_or_id of type str

	What to search for. Name or UUID of the snapshot to find

	return snapshot of type ISnapshot

	Snapshot object with the given name.

	raises VBoxErrorObjectNotFound

	Virtual machine has no snapshots or snapshot not found.

	
firmware_type

	Get or set FirmwareType value for ‘firmwareType’
Type of firmware (such as legacy BIOS or EFI), used for initial
bootstrap in this VM.

	
get_boot_order(position)

	Returns the device type that occupies the specified
position in the boot order.

@todo [remove?]
If the machine can have more than one device of the returned type
(such as hard disks), then a separate method should be used to
retrieve the individual device that occupies the given position.

If here are no devices at the given position, then
DeviceType.null is returned.

@todo getHardDiskBootOrder(), getNetworkBootOrder()

	in position of type int

	Position in the boot order (@c 1 to the total number of
devices the machine can boot from, as returned by
ISystemProperties.max_boot_position()).

	return device of type DeviceType

	Device at the given position.

	raises OleErrorInvalidarg

	Boot @a position out of range.

	
get_cpu_property(property_p)

	Returns the virtual CPU boolean value of the specified property.

	in property_p of type CPUPropertyType

	Property type to query.

	return value of type bool

	Property value.

	raises OleErrorInvalidarg

	Invalid property.

	
get_cpu_status(cpu)

	Returns the current status of the given CPU.

	in cpu of type int

	The CPU id to check for.

	return attached of type bool

	Status of the CPU.

	
get_cpuid_leaf(id_p)

	Returns the virtual CPU cpuid information for the specified leaf.

Currently supported index values for cpuid:
Standard CPUID leafs: 0 - 0xA
Extended CPUID leafs: 0x80000000 - 0x8000000A

See the Intel and AMD programmer’s manuals for detailed information
about the cpuid instruction and its leafs.

	in id_p of type int

	CPUID leaf index.

	out val_eax of type int

	CPUID leaf value for register eax.

	out val_ebx of type int

	CPUID leaf value for register ebx.

	out val_ecx of type int

	CPUID leaf value for register ecx.

	out val_edx of type int

	CPUID leaf value for register edx.

	raises OleErrorInvalidarg

	Invalid id.

	
get_effective_paravirt_provider()

	Returns the effective paravirtualization provider for this VM.

	return paravirt_provider of type ParavirtProvider

	The effective paravirtualization provider for this VM.

	
get_extra_data(key)

	Returns associated machine-specific extra data.

If the requested data @a key does not exist, this function will
succeed and return an empty string in the @a value argument.

	in key of type str

	Name of the data key to get.

	return value of type str

	Value of the requested data key.

	raises VBoxErrorFileError

	Settings file not accessible.

	raises VBoxErrorXmlError

	Could not parse the settings file.

	
get_extra_data_keys()

	Returns an array representing the machine-specific extra data keys
which currently have values defined.

	return keys of type str

	Array of extra data keys.

	
get_guest_property(name)

	Reads an entry from the machine’s guest property store.

	in name of type str

	The name of the property to read.

	out value of type str

	The value of the property. If the property does not exist then this
will be empty.

	out timestamp of type int

	The time at which the property was last modified, as seen by the
server process.

	out flags of type str

	Additional property parameters, passed as a comma-separated list of
“name=value” type entries.

	raises VBoxErrorInvalidVmState

	Machine session is not open.

	
get_guest_property_timestamp(property_p)

	Reads a property timestamp from the machine’s guest property store.

	in property_p of type str

	The name of the property to read.

	return value of type int

	The timestamp. If the property does not exist then this will be
empty.

	raises VBoxErrorInvalidVmState

	Machine session is not open.

	
get_guest_property_value(property_p)

	Reads a value from the machine’s guest property store.

	in property_p of type str

	The name of the property to read.

	return value of type str

	The value of the property. If the property does not exist then this
will be empty.

	raises VBoxErrorInvalidVmState

	Machine session is not open.

	
get_hw_virt_ex_property(property_p)

	Returns the value of the specified hardware virtualization boolean property.

	in property_p of type HWVirtExPropertyType

	Property type to query.

	return value of type bool

	Property value.

	raises OleErrorInvalidarg

	Invalid property.

	
get_medium(name, controller_port, device)

	Returns the virtual medium attached to a device slot of the specified
bus.

Note that if the medium was indirectly attached by
mount_medium() to the given device slot then this
method will return not the same object as passed to the
mount_medium() call. See IMedium for
more detailed information about mounting a medium.

	in name of type str

	Name of the storage controller the medium is attached to.

	in controller_port of type int

	Port to query.

	in device of type int

	Device slot in the given port to query.

	return medium of type IMedium

	Attached medium object.

	raises VBoxErrorObjectNotFound

	No medium attached to given slot/bus.

	
get_medium_attachment(name, controller_port, device)

	Returns a medium attachment which corresponds to the controller with
the given name, on the given port and device slot.

in name of type str

in controller_port of type int

in device of type int

return attachment of type IMediumAttachment

	raises VBoxErrorObjectNotFound

	No attachment exists for the given controller/port/device combination.

	
get_medium_attachments_of_controller(name)

	Returns an array of medium attachments which are attached to the
the controller with the given name.

in name of type str

return medium_attachments of type IMediumAttachment

	raises VBoxErrorObjectNotFound

	A storage controller with given name doesn’t exist.

	
get_network_adapter(slot)

	Returns the network adapter associated with the given slot.
Slots are numbered sequentially, starting with zero. The total
number of adapters per machine is defined by the
ISystemProperties.get_max_network_adapters() property,
so the maximum slot number is one less than that property’s value.

in slot of type int

return adapter of type INetworkAdapter

	raises OleErrorInvalidarg

	Invalid @a slot number.

	
get_parallel_port(slot)

	Returns the parallel port associated with the given slot.
Slots are numbered sequentially, starting with zero. The total
number of parallel ports per machine is defined by the
ISystemProperties.parallel_port_count() property,
so the maximum slot number is one less than that property’s value.

in slot of type int

return port of type IParallelPort

	raises OleErrorInvalidarg

	Invalid @a slot number.

	
get_serial_port(slot)

	Returns the serial port associated with the given slot.
Slots are numbered sequentially, starting with zero. The total
number of serial ports per machine is defined by the
ISystemProperties.serial_port_count() property,
so the maximum slot number is one less than that property’s value.

in slot of type int

return port of type ISerialPort

	raises OleErrorInvalidarg

	Invalid @a slot number.

	
get_storage_controller_by_instance(connection_type, instance)

	Returns a storage controller of a specific storage bus
with the given instance number.

in connection_type of type StorageBus

in instance of type int

return storage_controller of type IStorageController

	raises VBoxErrorObjectNotFound

	A storage controller with given instance number doesn’t exist.

	
get_storage_controller_by_name(name)

	Returns a storage controller with the given name.

in name of type str

return storage_controller of type IStorageController

	raises VBoxErrorObjectNotFound

	A storage controller with given name doesn’t exist.

	
get_usb_controller_by_name(name)

	Returns a USB controller with the given type.

in name of type str

return controller of type IUSBController

	raises VBoxErrorObjectNotFound

	A USB controller with given name doesn’t exist.

	
get_usb_controller_count_by_type(type_p)

	Returns the number of USB controllers of the given type attached to the VM.

in type_p of type USBControllerType

return controllers of type int

	
graphics_controller_type

	Get or set GraphicsControllerType value for ‘graphicsControllerType’
Graphics controller type.

	
groups

	Get or set str value for ‘groups’
Array of machine group names of which this machine is a member.
“” and “/” are synonyms for the toplevel group. Each
group is only listed once, however they are listed in no particular
order and there is no guarantee that there are no gaps in the group
hierarchy (i.e. “/group”,
“/group/subgroup/subsubgroup” is a valid result).

	
hardware_uuid

	Get or set str value for ‘hardwareUUID’
The UUID presented to the guest via memory tables, hardware and guest
properties. For most VMs this is the same as the @a id, but for VMs
which have been cloned or teleported it may be the same as the source
VM. The latter is because the guest shouldn’t notice that it was
cloned or teleported.

	
hardware_version

	Get or set str value for ‘hardwareVersion’
Hardware version identifier. Internal use only for now.

	
hot_plug_cpu(cpu)

	Plugs a CPU into the machine.

	in cpu of type int

	The CPU id to insert.

	
hot_unplug_cpu(cpu)

	Removes a CPU from the machine.

	in cpu of type int

	The CPU id to remove.

	
hpet_enabled

	Get or set bool value for ‘HPETEnabled’
This attribute controls if High Precision Event Timer (HPET) is
enabled in this VM. Use this property if you want to provide guests
with additional time source, or if guest requires HPET to function correctly.
Default is false.

	
icon

	Get or set str value for ‘icon’
Overridden VM Icon details.

	
id_p

	Get str value for ‘id’
UUID of the virtual machine.

	
io_cache_enabled

	Get or set bool value for ‘IOCacheEnabled’
When set to @a true, the builtin I/O cache of the virtual machine
will be enabled.

	
io_cache_size

	Get or set int value for ‘IOCacheSize’
Maximum size of the I/O cache in MB.

	
keyboard_hid_type

	Get or set KeyboardHIDType value for ‘keyboardHIDType’
Type of keyboard HID used in this VM.
The default is typically “PS2Keyboard” but can vary depending on the
requirements of the guest operating system.

	
last_state_change

	Get int value for ‘lastStateChange’
Time stamp of the last execution state change,
in milliseconds since 1970-01-01 UTC.

	
launch_vm_process(session=None, type_p='gui', environment='')

	Spawns a new process that will execute the virtual machine and obtains a shared
lock on the machine for the calling session.

If launching the VM succeeds, the new VM process will create its own session
and write-lock the machine for it, preventing conflicting changes from other
processes. If the machine is already locked (because it is already running or
because another session has a write lock), launching the VM process will therefore
fail. Reversely, future attempts to obtain a write lock will also fail while the
machine is running.

The caller’s session object remains separate from the session opened by the new
VM process. It receives its own IConsole object which can be used
to control machine execution, but it cannot be used to change all VM settings
which would be available after a lock_machine() call.

The caller must eventually release the session’s shared lock by calling
ISession.unlock_machine() on the local session object once this call
has returned. However, the session’s state (see ISession.state())
will not return to “Unlocked” until the remote session has also unlocked
the machine (i.e. the machine has stopped running).

Launching a VM process can take some time (a new VM is started in a new process,
for which memory and other resources need to be set up). Because of this,
an IProgress object is returned to allow the caller to wait
for this asynchronous operation to be completed. Until then, the caller’s
session object remains in the “Unlocked” state, and its ISession.machine()
and ISession.console() attributes cannot be accessed.
It is recommended to use IProgress.wait_for_completion() or
similar calls to wait for completion. Completion is signalled when the VM
is powered on. If launching the VM fails, error messages can be queried
via the progress object, if available.

The progress object will have at least 2 sub-operations. The first
operation covers the period up to the new VM process calls powerUp.
The subsequent operations mirror the IConsole.power_up()
progress object. Because IConsole.power_up() may require
some extra sub-operations, the IProgress.operation_count()
may change at the completion of operation.

For details on the teleportation progress operation, see
IConsole.power_up() .

<!– TODO/r=bird: What about making @a environment into a smart array? Guess
this predates our safe array support by a year or so... Dmitry wrote the text here, right?
Just rename it to @a environmentChanges and shorten the documentation to say the string
are applied onto the server environment putenv style, i.e. “VAR=VALUE” for setting/replacing
and “VAR” for unsetting. –>
The @a environment argument is a string containing definitions of
environment variables in the following format:

NAME[=VALUE]

NAME[=VALUE]

...

where n is the new line character. These environment
variables will be appended to the environment of the VirtualBox server
process. If an environment variable exists both in the server process
and in this list, the value from this list takes precedence over the
server’s variable. If the value of the environment variable is
omitted, this variable will be removed from the resulting environment.
If the environment string is @c null or empty, the server environment
is inherited by the started process as is.

	in session of type ISession

	Client session object to which the VM process will be connected (this
must be in “Unlocked” state).

	in name of type str

	Front-end to use for the new VM process. The following are currently supported:

“gui”: VirtualBox Qt GUI front-end
“headless”: VBoxHeadless (VRDE Server) front-end
“sdl”: VirtualBox SDL front-end
“emergencystop”: reserved value, used for aborting
the currently running VM or session owner. In this case the
@a session parameter may be @c null (if it is non-null it isn’t
used in any way), and the @a progress return value will be always
@c null. The operation completes immediately.
“”: use the per-VM default frontend if set, otherwise
the global default defined in the system properties. If neither
are set, the API will launch a “gui” session, which may
fail if there is no windowing environment available. See
IMachine.default_frontend() and
ISystemProperties.default_frontend() .

	in environment of type str

	Environment to pass to the VM process.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises OleErrorUnexpected

	Virtual machine not registered.

	raises OleErrorInvalidarg

	Invalid session type @a type.

	raises VBoxErrorObjectNotFound

	No machine matching @a machineId found.

	raises VBoxErrorInvalidObjectState

	Session already open or being opened.

	raises VBoxErrorIprtError

	Launching process for machine failed.

	raises VBoxErrorVmError

	Failed to assign machine to session.

	
lock_machine(session, lock_type)

	Locks the machine for the given session to enable the caller
to make changes to the machine or start the VM or control
VM execution.

There are two ways to lock a machine for such uses:

If you want to make changes to the machine settings,
you must obtain an exclusive write lock on the machine
by setting @a lockType to @c Write.

This will only succeed if no other process has locked
the machine to prevent conflicting changes. Only after
an exclusive write lock has been obtained using this method, one
can change all VM settings or execute the VM in the process
space of the session object. (Note that the latter is only of
interest if you actually want to write a new front-end for
virtual machines; but this API gets called internally by
the existing front-ends such as VBoxHeadless and the VirtualBox
GUI to acquire a write lock on the machine that they are running.)

On success, write-locking the machine for a session creates
a second copy of the IMachine object. It is this second object
upon which changes can be made; in VirtualBox terminology, the
second copy is “mutable”. It is only this second, mutable machine
object upon which you can call methods that change the
machine state. After having called this method, you can
obtain this second, mutable machine object using the
ISession.machine() attribute.

If you only want to check the machine state or control
machine execution without actually changing machine
settings (e.g. to get access to VM statistics or take
a snapshot or save the machine state), then set the
@a lockType argument to @c Shared.

If no other session has obtained a lock, you will obtain an
exclusive write lock as described above. However, if another
session has already obtained such a lock, then a link to that
existing session will be established which allows you
to control that existing session.

To find out which type of lock was obtained, you can
inspect ISession.type_p() , which will have been
set to either @c WriteLock or @c Shared.

In either case, you can get access to the IConsole
object which controls VM execution.

Also in all of the above cases, one must always call
ISession.unlock_machine() to release the lock on the machine, or
the machine’s state will eventually be set to “Aborted”.

To change settings on a machine, the following sequence is typically
performed:

Call this method to obtain an exclusive write lock for the current session.

Obtain a mutable IMachine object from ISession.machine() .

Change the settings of the machine by invoking IMachine methods.

Call IMachine.save_settings() .

Release the write lock by calling ISession.unlock_machine() .

	in session of type ISession

	Session object for which the machine will be locked.

	in lock_type of type LockType

	If set to @c Write, then attempt to acquire an exclusive write lock or fail.
If set to @c Shared, then either acquire an exclusive write lock or establish
a link to an existing session.

	raises OleErrorUnexpected

	Virtual machine not registered.

	raises OleErrorAccessdenied

	Process not started by

	raises VBoxErrorInvalidObjectState

	Session already open or being opened.

	raises VBoxErrorVmError

	Failed to assign machine to session.

	
log_folder

	Get str value for ‘logFolder’
Full path to the folder that stores a set of rotated log files
recorded during machine execution. The most recent log file is
named VBox.log, the previous log file is
named VBox.log.1 and so on (up to VBox.log.3
in the current version).

	
medium_attachments

	Get IMediumAttachment value for ‘mediumAttachments’
Array of media attached to this machine.

	
memory_balloon_size

	Get or set int value for ‘memoryBalloonSize’
Memory balloon size in megabytes.

	
memory_size

	Get or set int value for ‘memorySize’
System memory size in megabytes.

	
monitor_count

	Get or set int value for ‘monitorCount’
Number of virtual monitors.

Only effective on Windows XP and later guests with
Guest Additions installed.

	
mount_medium(name, controller_port, device, medium, force)

	Mounts a medium (IMedium , identified
by the given UUID @a id) to the given storage controller
(IStorageController , identified by @a name),
at the indicated port and device. The device must already exist;
see IMachine.attach_device() for how to attach a new device.

This method is intended only for managing removable media, where the
device is fixed but media is changeable at runtime (such as DVDs
and floppies). It cannot be used for fixed media such as hard disks.

The @a controllerPort and @a device parameters specify the device slot and
have have the same meaning as with IMachine.attach_device() .

The specified device slot can have a medium mounted, which will be
unmounted first. Specifying a zero UUID (or an empty string) for
@a medium does just an unmount.

See IMedium for more detailed information about
attaching media.

	in name of type str

	Name of the storage controller to attach the medium to.

	in controller_port of type int

	Port to attach the medium to.

	in device of type int

	Device slot in the given port to attach the medium to.

	in medium of type IMedium

	Medium to mount or @c null for an empty drive.

	in force of type bool

	Allows to force unmount/mount of a medium which is locked by
the device slot in the given port to attach the medium to.

	raises OleErrorInvalidarg

	SATA device, SATA port, IDE port or IDE slot out of range.

	raises VBoxErrorInvalidObjectState

	Attempt to attach medium to an unregistered virtual machine.

	raises VBoxErrorInvalidVmState

	Invalid machine state.

	raises VBoxErrorObjectInUse

	Medium already attached to this or another virtual machine.

	
name

	Get or set str value for ‘name’
Name of the virtual machine.

Besides being used for human-readable identification purposes
everywhere in VirtualBox, the virtual machine name is also used
as a name of the machine’s settings file and as a name of the
subdirectory this settings file resides in. Thus, every time you
change the value of this property, the settings file will be
renamed once you call save_settings() to confirm the
change. The containing subdirectory will be also renamed, but
only if it has exactly the same name as the settings file
itself prior to changing this property (for backward compatibility
with previous API releases). The above implies the following
limitations:

The machine name cannot be empty.
The machine name can contain only characters that are valid
file name characters according to the rules of the file
system used to store VirtualBox configuration.
You cannot have two or more machines with the same name
if they use the same subdirectory for storing the machine
settings files.
You cannot change the name of the machine if it is running,
or if any file in the directory containing the settings file
is being used by another running machine or by any other
process in the host operating system at a time when
save_settings() is called.

If any of the above limitations are hit, save_settings()
will return an appropriate error message explaining the exact
reason and the changes you made to this machine will not be saved.

Starting with VirtualBox 4.0, a ”.vbox” extension of the settings
file is recommended, but not enforced. (Previous versions always
used a generic ”.xml” extension.)

	
non_rotational_device(name, controller_port, device, non_rotational)

	Sets a flag in the device information which indicates that the medium
is not based on rotational technology, i.e. that the access times are
more or less independent of the position on the medium. This may or may
not be supported by a particular drive, and is silently ignored in the
latter case. At the moment only hard disks (which is a misnomer in this
context) accept this setting. Changing the setting while the VM is
running is forbidden. The device must already exist; see
IMachine.attach_device() for how to attach a new device.

The @a controllerPort and @a device parameters specify the device slot and
have have the same meaning as with IMachine.attach_device() .

	in name of type str

	Name of the storage controller.

	in controller_port of type int

	Storage controller port.

	in device of type int

	Device slot in the given port.

	in non_rotational of type bool

	New value for the non-rotational device flag.

	raises OleErrorInvalidarg

	SATA device, SATA port, IDE port or IDE slot out of range.

	raises VBoxErrorInvalidObjectState

	Attempt to modify an unregistered virtual machine.

	raises VBoxErrorInvalidVmState

	Invalid machine state.

	
os_type_id

	Get or set str value for ‘OSTypeId’
User-defined identifier of the Guest OS type.
You may use IVirtualBox.get_guest_os_type() to obtain
an IGuestOSType object representing details about the given
Guest OS type.

This value may differ from the value returned by
IGuest.os_type_id() if Guest Additions are
installed to the guest OS.

	
page_fusion_enabled

	Get or set bool value for ‘pageFusionEnabled’
This setting determines whether VirtualBox allows page
fusion for this machine (64-bit hosts only).

	
paravirt_debug

	Get or set str value for ‘paravirtDebug’
Debug parameters for the paravirtualized guest interface provider.

	
paravirt_provider

	Get or set ParavirtProvider value for ‘paravirtProvider’
The paravirtualized guest interface provider.

	
parent

	Get IVirtualBox value for ‘parent’
Associated parent object.

	
passthrough_device(name, controller_port, device, passthrough)

	Sets the passthrough mode of an existing DVD device. Changing the
setting while the VM is running is forbidden. The setting is only used
if at VM start the device is configured as a host DVD drive, in all
other cases it is ignored. The device must already exist; see
IMachine.attach_device() for how to attach a new device.

The @a controllerPort and @a device parameters specify the device slot and
have have the same meaning as with IMachine.attach_device() .

	in name of type str

	Name of the storage controller.

	in controller_port of type int

	Storage controller port.

	in device of type int

	Device slot in the given port.

	in passthrough of type bool

	New value for the passthrough setting.

	raises OleErrorInvalidarg

	SATA device, SATA port, IDE port or IDE slot out of range.

	raises VBoxErrorInvalidObjectState

	Attempt to modify an unregistered virtual machine.

	raises VBoxErrorInvalidVmState

	Invalid machine state.

	
pci_device_assignments

	Get IPCIDeviceAttachment value for ‘PCIDeviceAssignments’
Array of PCI devices assigned to this machine, to get list of all
PCI devices attached to the machine use
IConsole.attached_pci_devices() attribute, as this attribute
is intended to list only devices additional to what described in
virtual hardware config. Usually, this list keeps host’s physical
devices assigned to the particular machine.

	
pointing_hid_type

	Get or set PointingHIDType value for ‘pointingHIDType’
Type of pointing HID (such as mouse or tablet) used in this VM.
The default is typically “PS2Mouse” but can vary depending on the
requirements of the guest operating system.

	
query_log_filename(idx)

	Queries for the VM log file name of an given index. Returns an empty
string if a log file with that index doesn’t exists.

	in idx of type int

	Which log file name to query. 0=current log file.

	return filename of type str

	On return the full path to the log file or an empty string on error.

	
query_saved_guest_screen_info(screen_id)

	Returns the guest dimensions from the saved state.

	in screen_id of type int

	Saved guest screen to query info from.

	out origin_x of type int

	The X position of the guest monitor top left corner.

	out origin_y of type int

	The Y position of the guest monitor top left corner.

	out width of type int

	Guest width at the time of the saved state was taken.

	out height of type int

	Guest height at the time of the saved state was taken.

	out enabled of type bool

	Whether the monitor is enabled in the guest.

	
query_saved_screenshot_info(screen_id)

	Returns available formats and size of the screenshot from saved state.

	in screen_id of type int

	Saved guest screen to query info from.

	out width of type int

	Image width.

	out height of type int

	Image height.

	return bitmap_formats of type BitmapFormat

	Formats supported by readSavedScreenshotToArray.

	
read_log(idx, offset, size)

	Reads the VM log file. The chunk size is limited, so even if you
ask for a big piece there might be less data returned.

	in idx of type int

	Which log file to read. 0=current log file.

	in offset of type int

	Offset in the log file.

	in size of type int

	Chunk size to read in the log file.

	return data of type str

	Data read from the log file. A data size of 0 means end of file
if the requested chunk size was not 0. This is the unprocessed
file data, i.e. the line ending style depends on the platform of
the system the server is running on.

	
read_saved_screenshot_to_array(screen_id, bitmap_format)

	Screenshot in requested format is retrieved to an array of bytes.

	in screen_id of type int

	Saved guest screen to read from.

	in bitmap_format of type BitmapFormat

	The requested format.

	out width of type int

	Image width.

	out height of type int

	Image height.

	return data of type str

	Array with resulting image data.

	
read_saved_thumbnail_to_array(screen_id, bitmap_format)

	Thumbnail is retrieved to an array of bytes in the requested format.

	in screen_id of type int

	Saved guest screen to read from.

	in bitmap_format of type BitmapFormat

	The requested format.

	out width of type int

	Bitmap width.

	out height of type int

	Bitmap height.

	return data of type str

	Array with resulting bitmap data.

	
remove(delete=True)

	Unregister and optionally delete associated config

	Options:

	delete - remove all elements of this VM from the system

Return the IMedia from unregistered VM

	
remove_all_cpuid_leaves()

	Removes all the virtual CPU cpuid leaves

	
remove_cpuid_leaf(id_p)

	Removes the virtual CPU cpuid leaf for the specified index

	in id_p of type int

	CPUID leaf index.

	raises OleErrorInvalidarg

	Invalid id.

	
remove_shared_folder(name)

	Removes the permanent shared folder with the given name previously
created by create_shared_folder() from the collection of
shared folders and stops sharing it.

	in name of type str

	Logical name of the shared folder to remove.

	raises VBoxErrorInvalidVmState

	Virtual machine is not mutable.

	raises VBoxErrorObjectNotFound

	Shared folder @a name does not exist.

	
remove_storage_controller(name)

	Removes a storage controller from the machine with all devices attached to it.

in name of type str

	raises VBoxErrorObjectNotFound

	A storage controller with given name doesn’t exist.

	raises VBoxErrorNotSupported

	Medium format does not support storage deletion (only for implicitly

created differencing media, should not happen).

	
remove_usb_controller(name)

	Removes a USB controller from the machine.

in name of type str

	raises VBoxErrorObjectNotFound

	A USB controller with given type doesn’t exist.

	
restore_snapshot(snapshot=None)

	Starts resetting the machine’s current state to the state contained
in the given snapshot, asynchronously. All current settings of the
machine will be reset and changes stored in differencing media
will be lost.
See ISnapshot for an introduction to snapshots.

After this operation is successfully completed, new empty differencing
media are created for all normal media of the machine.

If the given snapshot is an online snapshot, the machine will go to
the MachineState.saved saved state, so that the
next time it is powered on, the execution state will be restored
from the state of the snapshot.

The machine must not be running, otherwise the operation will fail.

If the machine state is MachineState.saved Saved
prior to this operation, the saved state file will be implicitly
deleted (as if IMachine.discard_saved_state() were
called).

	in snapshot of type ISnapshot

	The snapshot to restore the VM state from.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorInvalidVmState

	Virtual machine is running.

	
rtc_use_utc

	Get or set bool value for ‘RTCUseUTC’
When set to @a true, the RTC device of the virtual machine will run
in UTC time, otherwise in local time. Especially Unix guests prefer
the time in UTC.

	
save_settings()

	Saves any changes to machine settings made since the session
has been opened or a new machine has been created, or since the
last call to save_settings() or discard_settings() .
For registered machines, new settings become visible to all
other VirtualBox clients after successful invocation of this
method.

The method sends IMachineDataChangedEvent
notification event after the configuration has been successfully
saved (only for registered machines).

Calling this method is only valid on instances returned
by ISession.machine() and on new machines
created by IVirtualBox.create_machine() but not
yet registered, or on unregistered machines after calling
IMachine.unregister() .

	raises VBoxErrorFileError

	Settings file not accessible.

	raises VBoxErrorXmlError

	Could not parse the settings file.

	raises OleErrorAccessdenied

	Modification request refused.

	
save_state()

	Saves the current execution state of a running virtual machine
and stops its execution.

After this operation completes, the machine will go to the
Saved state. Next time it is powered up, this state will
be restored and the machine will continue its execution from
the place where it was saved.

This operation differs from taking a snapshot to the effect
that it doesn’t create new differencing media. Also, once
the machine is powered up from the state saved using this method,
the saved state is deleted, so it will be impossible to return
to this state later.

On success, this method implicitly calls
save_settings() to save all current machine
settings (including runtime changes to the DVD medium, etc.).
Together with the impossibility to change any VM settings when it is
in the Saved state, this guarantees adequate hardware
configuration of the machine when it is restored from the saved
state file.

The machine must be in the Running or Paused state, otherwise
the operation will fail.

take_snapshot()

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorInvalidVmState

	Virtual machine state neither Running nor Paused.

	raises VBoxErrorFileError

	Failed to create directory for saved state file.

	
session_name

	Get str value for ‘sessionName’
Name of the session. If session_state() is
Spawning or Locked, this attribute contains the
same value as passed to the
IMachine.launch_vm_process() method in the
@a name parameter. If the session was established with
IMachine.lock_machine() , it is the name of the session
(if set, otherwise empty string). If
session_state() is SessionClosed, the value of this
attribute is an empty string.

	
session_pid

	Get int value for ‘sessionPID’
Identifier of the session process. This attribute contains the
platform-dependent identifier of the process whose session was
used with IMachine.lock_machine() call. The returned
value is only valid if session_state() is Locked or
Unlocking by the time this property is read.

	
session_state

	Get SessionState value for ‘sessionState’
Current session state for this machine.

	
set_auto_discard_for_device(name, controller_port, device, discard)

	Sets a flag in the device information which indicates that the medium
supports discarding unused blocks (called trimming for SATA or unmap
for SCSI devices) .This may or may not be supported by a particular drive,
and is silently ignored in the latter case. At the moment only hard disks
(which is a misnomer in this context) accept this setting. Changing the
setting while the VM is running is forbidden. The device must already
exist; see IMachine.attach_device() for how to attach a new
device.

The @a controllerPort and @a device parameters specify the device slot and
have have the same meaning as with IMachine.attach_device() .

	in name of type str

	Name of the storage controller.

	in controller_port of type int

	Storage controller port.

	in device of type int

	Device slot in the given port.

	in discard of type bool

	New value for the discard device flag.

	raises OleErrorInvalidarg

	SATA device, SATA port, SCSI port out of range.

	raises VBoxErrorInvalidObjectState

	Attempt to modify an unregistered virtual machine.

	raises VBoxErrorInvalidVmState

	Invalid machine state.

	
set_bandwidth_group_for_device(name, controller_port, device, bandwidth_group)

	Sets the bandwidth group of an existing storage device.
The device must already exist; see IMachine.attach_device()
for how to attach a new device.

The @a controllerPort and @a device parameters specify the device slot and
have have the same meaning as with IMachine.attach_device() .

	in name of type str

	Name of the storage controller.

	in controller_port of type int

	Storage controller port.

	in device of type int

	Device slot in the given port.

	in bandwidth_group of type IBandwidthGroup

	New value for the bandwidth group or @c null for no group.

	raises OleErrorInvalidarg

	SATA device, SATA port, IDE port or IDE slot out of range.

	raises VBoxErrorInvalidObjectState

	Attempt to modify an unregistered virtual machine.

	raises VBoxErrorInvalidVmState

	Invalid machine state.

	
set_boot_order(position, device)

	Puts the given device to the specified position in
the boot order.

To indicate that no device is associated with the given position,
DeviceType.null should be used.

@todo setHardDiskBootOrder(), setNetworkBootOrder()

	in position of type int

	Position in the boot order (@c 1 to the total number of
devices the machine can boot from, as returned by
ISystemProperties.max_boot_position()).

	in device of type DeviceType

	The type of the device used to boot at the given position.

	raises OleErrorInvalidarg

	Boot @a position out of range.

	raises OleErrorNotimpl

	Booting from USB @a device currently not supported.

	
set_cpu_property(property_p, value)

	Sets the virtual CPU boolean value of the specified property.

	in property_p of type CPUPropertyType

	Property type to query.

	in value of type bool

	Property value.

	raises OleErrorInvalidarg

	Invalid property.

	
set_cpuid_leaf(id_p, val_eax, val_ebx, val_ecx, val_edx)

	Sets the virtual CPU cpuid information for the specified leaf. Note that these values
are not passed unmodified. VirtualBox clears features that it doesn’t support.

Currently supported index values for cpuid:
Standard CPUID leafs: 0 - 0xA
Extended CPUID leafs: 0x80000000 - 0x8000000A

See the Intel and AMD programmer’s manuals for detailed information
about the cpuid instruction and its leafs.

Do not use this method unless you know exactly what you’re doing. Misuse can lead to
random crashes inside VMs.

	in id_p of type int

	CPUID leaf index.

	in val_eax of type int

	CPUID leaf value for register eax.

	in val_ebx of type int

	CPUID leaf value for register ebx.

	in val_ecx of type int

	CPUID leaf value for register ecx.

	in val_edx of type int

	CPUID leaf value for register edx.

	raises OleErrorInvalidarg

	Invalid id.

	
set_extra_data(key, value)

	Sets associated machine-specific extra data.

If you pass @c null or an empty string as a key @a value, the given
@a key will be deleted.

Before performing the actual data change, this method will ask all
registered listeners using the
IExtraDataCanChangeEvent
notification for a permission. If one of the listeners refuses the
new value, the change will not be performed.

On success, the
IExtraDataChangedEvent notification
is called to inform all registered listeners about a successful data
change.

This method can be called outside the machine session and therefore
it’s a caller’s responsibility to handle possible race conditions
when several clients change the same key at the same time.

	in key of type str

	Name of the data key to set.

	in value of type str

	Value to assign to the key.

	raises VBoxErrorFileError

	Settings file not accessible.

	raises VBoxErrorXmlError

	Could not parse the settings file.

	
set_guest_property(property_p, value, flags)

	Sets, changes or deletes an entry in the machine’s guest property
store.

	in property_p of type str

	The name of the property to set, change or delete.

	in value of type str

	The new value of the property to set, change or delete. If the
property does not yet exist and value is non-empty, it will be
created. If the value is @c null or empty, the property will be
deleted if it exists.

	in flags of type str

	Additional property parameters, passed as a comma-separated list of
“name=value” type entries.

	raises OleErrorAccessdenied

	Property cannot be changed.

	raises OleErrorInvalidarg

	Invalid @a flags.

	raises VBoxErrorInvalidVmState

	Virtual machine is not mutable or session not open.

	raises VBoxErrorInvalidObjectState

	Cannot set transient property when machine not running.

	
set_guest_property_value(property_p, value)

	Sets or changes a value in the machine’s guest property
store. The flags field will be left unchanged or created empty for a
new property.

	in property_p of type str

	The name of the property to set or change.

	in value of type str

	The new value of the property to set or change. If the
property does not yet exist and value is non-empty, it will be
created.

	raises OleErrorAccessdenied

	Property cannot be changed.

	raises VBoxErrorInvalidVmState

	Virtual machine is not mutable or session not open.

	raises VBoxErrorInvalidObjectState

	Cannot set transient property when machine not running.

	
set_hot_pluggable_for_device(name, controller_port, device, hot_pluggable)

	Sets a flag in the device information which indicates that the attached
device is hot pluggable or not. This may or may not be supported by a
particular controller and/or drive, and is silently ignored in the
latter case. Changing the setting while the VM is running is forbidden.
The device must already exist; see IMachine.attach_device()
for how to attach a new device.

The @a controllerPort and @a device parameters specify the device slot and
have have the same meaning as with IMachine.attach_device() .

	in name of type str

	Name of the storage controller.

	in controller_port of type int

	Storage controller port.

	in device of type int

	Device slot in the given port.

	in hot_pluggable of type bool

	New value for the hot-pluggable device flag.

	raises OleErrorInvalidarg

	SATA device, SATA port, IDE port or IDE slot out of range.

	raises VBoxErrorInvalidObjectState

	Attempt to modify an unregistered virtual machine.

	raises VBoxErrorInvalidVmState

	Invalid machine state.

	raises VBoxErrorNotSupported

	Controller doesn’t support hot plugging.

	
set_hw_virt_ex_property(property_p, value)

	Sets a new value for the specified hardware virtualization boolean property.

	in property_p of type HWVirtExPropertyType

	Property type to set.

	in value of type bool

	New property value.

	raises OleErrorInvalidarg

	Invalid property.

	
set_no_bandwidth_group_for_device(name, controller_port, device)

	Sets no bandwidth group for an existing storage device.
The device must already exist; see IMachine.attach_device()
for how to attach a new device.
The @a controllerPort and @a device parameters specify the device slot and
have have the same meaning as with IMachine.attach_device() .

	in name of type str

	Name of the storage controller.

	in controller_port of type int

	Storage controller port.

	in device of type int

	Device slot in the given port.

	raises OleErrorInvalidarg

	SATA device, SATA port, IDE port or IDE slot out of range.

	raises VBoxErrorInvalidObjectState

	Attempt to modify an unregistered virtual machine.

	raises VBoxErrorInvalidVmState

	Invalid machine state.

	
set_settings_file_path(settings_file_path)

	Currently, it is an error to change this property on any machine.
Later this will allow setting a new path for the settings file, with
automatic relocation of all files (including snapshots and disk images)
which are inside the base directory. This operation is only allowed
when there are no pending unsaved settings.

Setting this property to @c null or to an empty string is forbidden.
When setting this property, the specified path must be absolute.
The specified path may not exist, it will be created when necessary.

	in settings_file_path of type str

	New settings file path, will be used to determine the new
location for the attached media if it is in the same directory or
below as the original settings file.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises OleErrorNotimpl

	The operation is not implemented yet.

	
set_storage_controller_bootable(name, bootable)

	Sets the bootable flag of the storage controller with the given name.

in name of type str

in bootable of type bool

	raises VBoxErrorObjectNotFound

	A storage controller with given name doesn’t exist.

	raises VBoxErrorObjectInUse

	Another storage controller is marked as bootable already.

	
settings_aux_file_path

	Get str value for ‘settingsAuxFilePath’
Full name of the file containing auxiliary machine settings data.

	
settings_file_path

	Get str value for ‘settingsFilePath’
Full name of the file containing machine settings data.

	
settings_modified

	Get bool value for ‘settingsModified’
Whether the settings of this machine have been modified
(but neither yet saved nor discarded).

Reading this property is only valid on instances returned
by ISession.machine() and on new machines
created by IVirtualBox.create_machine() or opened
by IVirtualBox.open_machine() but not
yet registered, or on unregistered machines after calling
IMachine.unregister() . For all other
cases, the settings can never be modified.

For newly created unregistered machines, the value of this
property is always @c true until save_settings()
is called (no matter if any machine settings have been
changed after the creation or not). For opened machines
the value is set to @c false (and then follows to normal rules).

	
shared_folders

	Get ISharedFolder value for ‘sharedFolders’
Collection of shared folders for this machine (permanent shared
folders). These folders are shared automatically at machine startup
and available only to the guest OS installed within this machine.

New shared folders are added to the collection using
create_shared_folder() . Existing shared folders can be
removed using remove_shared_folder() .

	
show_console_window()

	Activates the console window and brings it to foreground on
the desktop of the host PC. Many modern window managers on
many platforms implement some sort of focus stealing
prevention logic, so that it may be impossible to activate
a window without the help of the currently active
application. In this case, this method will return a non-zero
identifier that represents the top-level window of the VM
console process. The caller, if it represents a currently
active process, is responsible to use this identifier (in a
platform-dependent manner) to perform actual window
activation.

This method will fail if a session for this machine is not
currently open.

	return win_id of type int

	Platform-dependent identifier of the top-level VM console
window, or zero if this method has performed all actions
necessary to implement the show window semantics for
the given platform and/or VirtualBox front-end.

	raises VBoxErrorInvalidVmState

	Machine session is not open.

	
snapshot_count

	Get int value for ‘snapshotCount’
Number of snapshots taken on this machine. Zero means the
machine doesn’t have any snapshots.

	
snapshot_folder

	Get or set str value for ‘snapshotFolder’
Full path to the directory used to store snapshot data
(differencing media and saved state files) of this machine.

The initial value of this property is
<settings_file_path() path_to_settings_file>/<
id_p() machine_uuid
>.

Currently, it is an error to try to change this property on
a machine that has snapshots (because this would require to
move possibly large files to a different location).
A separate method will be available for this purpose later.

Setting this property to @c null or to an empty string will restore
the initial value.

When setting this property, the specified path can be
absolute (full path) or relative to the directory where the
settings_file_path() machine settings file
is located. When reading this property, a full path is
always returned.

The specified path may not exist, it will be created
when necessary.

	
state

	Get MachineState value for ‘state’
Current execution state of this machine.

	
state_file_path

	Get str value for ‘stateFilePath’
Full path to the file that stores the execution state of
the machine when it is in the MachineState.saved state.

When the machine is not in the Saved state, this attribute is
an empty string.

	
storage_controllers

	Get IStorageController value for ‘storageControllers’
Array of storage controllers attached to this machine.

	
take_snapshot(name, description, pause)

	Saves the current execution state
and all settings of the machine and creates differencing images
for all normal (non-independent) media.
See ISnapshot for an introduction to snapshots.

This method can be called for a PoweredOff, Saved (see
save_state()), Running or
Paused virtual machine. When the machine is PoweredOff, an
offline snapshot is created. When the machine is Running a live
snapshot is created, and an online snapshot is created when Paused.

The taken snapshot is always based on the
current_snapshot() current snapshot
of the associated virtual machine and becomes a new current snapshot.

This method implicitly calls save_settings() to
save all current machine settings before taking an offline snapshot.

	in name of type str

	Short name for the snapshot.

	in description of type str

	Optional description of the snapshot.

	in pause of type bool

	Whether the VM should be paused while taking the snapshot. Only
relevant when the VM is running, and distinguishes between online
(@c true) and live (@c false) snapshots. When the VM is not running
the result is always an offline snapshot.

	out id_p of type str

	UUID of the snapshot which will be created. Useful for follow-up
operations after the snapshot has been created.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorInvalidVmState

	Virtual machine currently changing state.

	
teleporter_address

	Get or set str value for ‘teleporterAddress’
The address the target teleporter will listen on. If set to an empty
string, it will listen on all addresses.

	
teleporter_enabled

	Get or set bool value for ‘teleporterEnabled’
When set to @a true, the virtual machine becomes a target teleporter
the next time it is powered on. This can only set to @a true when the
VM is in the @a PoweredOff or @a Aborted state.

<!– This property is automatically set to @a false when the VM is powered
on. (bird: This doesn’t work yet) –>

	
teleporter_password

	Get or set str value for ‘teleporterPassword’
The password to check for on the target teleporter. This is just a
very basic measure to prevent simple hacks and operators accidentally
beaming a virtual machine to the wrong place.

Note that you SET a plain text password while reading back a HASHED
password. Setting a hashed password is currently not supported.

	
teleporter_port

	Get or set int value for ‘teleporterPort’
The TCP port the target teleporter will listen for incoming
teleportations on.

0 means the port is automatically selected upon power on. The actual
value can be read from this property while the machine is waiting for
incoming teleportations.

	
temporary_eject_device(name, controller_port, device, temporary_eject)

	Sets the behavior for guest-triggered medium eject. In some situations
it is desirable that such ejects update the VM configuration, and in
others the eject should keep the VM configuration. The device must
already exist; see IMachine.attach_device() for how to
attach a new device.

The @a controllerPort and @a device parameters specify the device slot and
have have the same meaning as with IMachine.attach_device() .

	in name of type str

	Name of the storage controller.

	in controller_port of type int

	Storage controller port.

	in device of type int

	Device slot in the given port.

	in temporary_eject of type bool

	New value for the eject behavior.

	raises OleErrorInvalidarg

	SATA device, SATA port, IDE port or IDE slot out of range.

	raises VBoxErrorInvalidObjectState

	Attempt to modify an unregistered virtual machine.

	raises VBoxErrorInvalidVmState

	Invalid machine state.

	
tracing_config

	Get or set str value for ‘tracingConfig’
Tracepoint configuration to apply at startup when
IMachine.tracing_enabled() is true. The string specifies
a space separated of tracepoint group names to enable. The special
group ‘all’ enables all tracepoints. Check DBGFR3TracingConfig for
more details on available tracepoint groups and such.

Note that on hosts supporting DTrace (or similar), a lot of the
tracepoints may be implemented exclusively as DTrace probes. So, the
effect of the same config may differ between Solaris and Windows for
example.

	
tracing_enabled

	Get or set bool value for ‘tracingEnabled’
Enables the tracing facility in the VMM (including PDM devices +
drivers). The VMM will consume about 0.5MB of more memory when
enabled and there may be some extra overhead from tracepoints that are
always enabled.

	
unmount_medium(name, controller_port, device, force)

	Unmounts any currently mounted medium (IMedium ,
identified by the given UUID @a id) to the given storage controller
(IStorageController , identified by @a name),
at the indicated port and device. The device must already exist;

This method is intended only for managing removable media, where the
device is fixed but media is changeable at runtime (such as DVDs
and floppies). It cannot be used for fixed media such as hard disks.

The @a controllerPort and @a device parameters specify the device slot
and have have the same meaning as with
IMachine.attach_device() .

The specified device slot must have a medium mounted, which will be
unmounted. If there is no mounted medium it will do nothing.
See IMedium for more detailed information about
attaching/unmounting media.

	in name of type str

	Name of the storage controller to unmount the medium from.

	in controller_port of type int

	Port to unmount the medium from.

	in device of type int

	Device slot in the given port to unmount the medium from.

	in force of type bool

	Allows to force unmount of a medium which is locked by
the device slot in the given port medium is attached to.

	raises OleErrorInvalidarg

	SATA device, SATA port, IDE port or IDE slot out of range.

	raises VBoxErrorInvalidObjectState

	Attempt to unmount medium that is not removable - not DVD or floppy.

	raises VBoxErrorInvalidVmState

	Invalid machine state.

	raises VBoxErrorObjectInUse

	Medium already attached to this or another virtual machine.

	raises VBoxErrorObjectNotFound

	Medium not attached to specified port, device, controller.

	
unregister(cleanup_mode)

	Unregisters a machine previously registered with
IVirtualBox.register_machine() and optionally do additional
cleanup before the machine is unregistered.

This method does not delete any files. It only changes the machine configuration and
the list of registered machines in the VirtualBox object. To delete the files which
belonged to the machine, including the XML file of the machine itself, call
delete_config() , optionally with the array of IMedium objects which was returned
from this method.

How thoroughly this method cleans up the machine configuration before unregistering
the machine depends on the @a cleanupMode argument.

With “UnregisterOnly”, the machine will only be unregistered, but no additional
cleanup will be performed. The call will fail if the machine is in “Saved” state
or has any snapshots or any media attached (see IMediumAttachment).
It is the responsibility of the caller to delete all such configuration in this mode.
In this mode, the API behaves like the former @c IVirtualBox::unregisterMachine() API
which it replaces.
With “DetachAllReturnNone”, the call will succeed even if the machine is in “Saved”
state or if it has snapshots or media attached. All media attached to the current machine
state or in snapshots will be detached. No medium objects will be returned;
all of the machine’s media will remain open.
With “DetachAllReturnHardDisksOnly”, the call will behave like with “DetachAllReturnNone”,
except that all the hard disk medium objects which were detached from the machine will
be returned as an array. This allows for quickly passing them to the delete_config()
API for closing and deletion.
With “Full”, the call will behave like with “DetachAllReturnHardDisksOnly”, except
that all media will be returned in the array, including removable media like DVDs and
floppies. This might be useful if the user wants to inspect in detail which media were
attached to the machine. Be careful when passing the media array to delete_config()
in that case because users will typically want to preserve ISO and RAW image files.

A typical implementation will use “DetachAllReturnHardDisksOnly” and then pass the
resulting IMedium array to delete_config() . This way, the machine is completely
deleted with all its saved states and hard disk images, but images for removable
drives (such as ISO and RAW files) will remain on disk.

This API does not verify whether the media files returned in the array are still
attached to other machines (i.e. shared between several machines). If such a shared
image is passed to delete_config() however, closing the image will fail there
and the image will be silently skipped.

This API may, however, move media from this machine’s media registry to other media
registries (see IMedium for details on media registries). For machines
created with VirtualBox 4.0 or later, if media from this machine’s media registry
are also attached to another machine (shared attachments), each such medium will be
moved to another machine’s registry. This is because without this machine’s media
registry, the other machine cannot find its media any more and would become inaccessible.

This API implicitly calls save_settings() to save all current machine settings
before unregistering it. It may also silently call save_settings() on other machines
if media are moved to other machines’ media registries.

After successful method invocation, the IMachineRegisteredEvent event
is fired.

The call will fail if the machine is currently locked (see ISession).

If the given machine is inaccessible (see accessible()), it
will be unregistered and fully uninitialized right afterwards. As a result,
the returned machine object will be unusable and an attempt to call
any method will return the “Object not ready” error.

	in cleanup_mode of type CleanupMode

	How to clean up after the machine has been unregistered.

	return media of type IMedium

	List of media detached from the machine, depending on the @a cleanupMode parameter.

	raises VBoxErrorInvalidObjectState

	Machine is currently locked for a session.

	
usb_controllers

	Get IUSBController value for ‘USBControllers’
Array of USB controllers attached to this machine.

If USB functionality is not available in the given edition of
VirtualBox, this method will set the result code to @c E_NOTIMPL.

	
usb_device_filters

	Get IUSBDeviceFilters value for ‘USBDeviceFilters’
Associated USB device filters object.

If USB functionality is not available in the given edition of
VirtualBox, this method will set the result code to @c E_NOTIMPL.

	
usb_proxy_available

	Get bool value for ‘USBProxyAvailable’
Returns whether there is an USB proxy available.

	
video_capture_enabled

	Get or set bool value for ‘videoCaptureEnabled’
This setting determines whether VirtualBox uses video recording to
record VM session.

	
video_capture_file

	Get or set str value for ‘videoCaptureFile’
This setting determines the filename VirtualBox uses to save
the recorded content. This setting cannot be changed while video
capturing is enabled.

When setting this attribute, the specified path has to be
absolute (full path). When reading this attribute, a full path is
always returned.

	
video_capture_fps

	Get or set int value for ‘videoCaptureFPS’
This setting determines the maximum number of frames per second.
Frames with a higher frequency will be skipped. Reducing this
value increases the number of skipped frames and reduces the
file size. This setting cannot be changed while video capturing
is enabled.

	
video_capture_height

	Get or set int value for ‘videoCaptureHeight’
This setting determines the vertical resolution of the recorded
video. This setting cannot be changed while video capturing is
enabled.

	
video_capture_max_file_size

	Get or set int value for ‘videoCaptureMaxFileSize’
This setting determines the maximal number of captured video file
size in MB. The capture stops as the captured video file size
has reached the defined. If this value is zero the capturing
will not be limited by file size. This setting cannot be changed
while video capturing is enabled.

	
video_capture_max_time

	Get or set int value for ‘videoCaptureMaxTime’
This setting determines the maximum amount of time in milliseconds
the video capture will work for. The capture stops as the defined time
interval has elapsed. If this value is zero the capturing will not be
limited by time. This setting cannot be changed while video capturing is
enabled.

	
video_capture_options

	Get or set str value for ‘videoCaptureOptions’
This setting contains any additional video capture options
required in comma-separated key=value format. This setting
cannot be changed while video capturing is enabled.

	
video_capture_rate

	Get or set int value for ‘videoCaptureRate’
This setting determines the bitrate in kilobits per second.
Increasing this value makes the video look better for the
cost of an increased file size. This setting cannot be changed
while video capturing is enabled.

	
video_capture_screens

	Get or set bool value for ‘videoCaptureScreens’
This setting determines for which screens video recording is
enabled.

	
video_capture_width

	Get or set int value for ‘videoCaptureWidth’
This setting determines the horizontal resolution of the recorded
video. This setting cannot be changed while video capturing is
enabled.

	
vm_process_priority

	Get or set str value for ‘VMProcessPriority’
Sets the priority of the VM process. It is a VM setting which can
be changed both before starting the VM and at runtime. The valid
values are system specific, and if a value is specified which does
not get recognized, then it will be remembered (useful for preparing
VM configs for other host OSes), with a successful result.

The default value is the empty string, which selects the default
process priority.

	
vram_size

	Get or set int value for ‘VRAMSize’
Video memory size in megabytes.

	
vrde_server

	Get IVRDEServer value for ‘VRDEServer’
VirtualBox Remote Desktop Extension (VRDE) server object.

	
class virtualbox.library.IProgress(interface=None)

	The IProgress interface is used to track and control
asynchronous tasks within VirtualBox.

An instance of this is returned every time VirtualBox starts
an asynchronous task (in other words, a separate thread) which
continues to run after a method call returns. For example,
IMachine.save_state() , which saves the state of
a running virtual machine, can take a long time to complete.
To be able to display a progress bar, a user interface such as
the VirtualBox graphical user interface can use the IProgress
object returned by that method.

Note that IProgress is a “read-only” interface in the sense
that only the VirtualBox internals behind the Main API can
create and manipulate progress objects, whereas client code
can only use the IProgress object to monitor a task’s
progress and, if cancelable() is @c true,
cancel the task by calling cancel() .

A task represented by IProgress consists of either one or
several sub-operations that run sequentially, one by one (see
operation() and operation_count()).
Every operation is identified by a number (starting from 0)
and has a separate description.

You can find the individual percentage of completion of the current
operation in operation_percent() and the
percentage of completion of the task as a whole
in percent() .

Similarly, you can wait for the completion of a particular
operation via wait_for_operation_completion() or
for the completion of the whole task via
wait_for_completion() .

	
wait_for_completion(timeout=-1)

	Waits until the task is done (including all sub-operations)
with a given timeout in milliseconds; specify -1 for an indefinite wait.

Note that the VirtualBox/XPCOM/COM/native event queues of the calling
thread are not processed while waiting. Neglecting event queues may
have dire consequences (degrade performance, resource hogs,
deadlocks, etc.), this is specially so for the main thread on
platforms using XPCOM. Callers are advised wait for short periods
and service their event queues between calls, or to create a worker
thread to do the waiting.

	in timeout of type int

	Maximum time in milliseconds to wait or -1 to wait indefinitely.

	raises VBoxErrorIprtError

	Failed to wait for task completion.

	
cancel()

	Cancels the task.

If cancelable() is @c false, then this method will fail.

	raises VBoxErrorInvalidObjectState

	Operation cannot be canceled.

	
cancelable

	Get bool value for ‘cancelable’
Whether the task can be interrupted.

	
canceled

	Get bool value for ‘canceled’
Whether the task has been canceled.

	
completed

	Get bool value for ‘completed’
Whether the task has been completed.

	
description

	Get str value for ‘description’
Description of the task.

	
error_info

	Get IVirtualBoxErrorInfo value for ‘errorInfo’
Extended information about the unsuccessful result of the
progress operation. May be @c null if no extended information
is available.
Valid only if completed() is @c true and
result_code() indicates a failure.

	
id_p

	Get str value for ‘id’
ID of the task.

	
initiator

	Get Interface value for ‘initiator’
Initiator of the task.

	
operation

	Get int value for ‘operation’
Number of the sub-operation being currently executed.

	
operation_count

	Get int value for ‘operationCount’
Number of sub-operations this task is divided into.
Every task consists of at least one suboperation.

	
operation_description

	Get str value for ‘operationDescription’
Description of the sub-operation being currently executed.

	
operation_percent

	Get int value for ‘operationPercent’
Progress value of the current sub-operation only, in percent.

	
operation_weight

	Get int value for ‘operationWeight’
Weight value of the current sub-operation only.

	
percent

	Get int value for ‘percent’
Current progress value of the task as a whole, in percent.
This value depends on how many operations are already complete.
Returns 100 if completed() is @c true.

	
result_code

	Get int value for ‘resultCode’
Result code of the progress task.
Valid only if completed() is @c true.

	
set_current_operation_progress(percent)

	Internal method, not to be called externally.

in percent of type int

	
set_next_operation(next_operation_description, next_operations_weight)

	Internal method, not to be called externally.

in next_operation_description of type str

in next_operations_weight of type int

	
time_remaining

	Get int value for ‘timeRemaining’
Estimated remaining time until the task completes, in
seconds. Returns 0 once the task has completed; returns -1
if the remaining time cannot be computed, in particular if
the current progress is 0.

Even if a value is returned, the estimate will be unreliable
for low progress values. It will become more reliable as the
task progresses; it is not recommended to display an ETA
before at least 20% of a task have completed.

	
timeout

	Get or set int value for ‘timeout’
When non-zero, this specifies the number of milliseconds after which
the operation will automatically be canceled. This can only be set on
cancelable objects.

	
wait_for_async_progress_completion(p_progress_async)

	Waits until the other task is completed (including all
sub-operations) and forward all changes from the other progress to
this progress. This means sub-operation number, description, percent
and so on.

You have to take care on setting up at least the same count on
sub-operations in this progress object like there are in the other
progress object.

If the other progress object supports cancel and this object gets any
cancel request (when here enabled as well), it will be forwarded to
the other progress object.

If there is an error in the other progress, this error isn’t
automatically transfered to this progress object. So you have to
check any operation error within the other progress object, after
this method returns.

	in p_progress_async of type IProgress

	The progress object of the asynchrony process.

	
wait_for_operation_completion(operation, timeout)

	Waits until the given operation is done with a given timeout in
milliseconds; specify -1 for an indefinite wait.

See wait_for_completion() for event queue considerations.

	in operation of type int

	Number of the operation to wait for.
Must be less than operation_count() .

	in timeout of type int

	Maximum time in milliseconds to wait or -1 to wait indefinitely.

	raises VBoxErrorIprtError

	Failed to wait for operation completion.

	
class virtualbox.library.IConsole(interface=None)

	The IConsole interface represents an interface to control virtual
machine execution.

A console object gets created when a machine has been locked for a
particular session (client process) using IMachine.lock_machine()
or IMachine.launch_vm_process() . The console object can
then be found in the session’s ISession.console() attribute.

Methods of the IConsole interface allow the caller to query the current
virtual machine execution state, pause the machine or power it down, save
the machine state or take a snapshot, attach and detach removable media
and so on.

ISession

	
register_on_network_adapter_changed(callback)

	Set the callback function to consume on network adapter changed
events.

Callback receives a INetworkAdapterChangedEvent object.

Returns the callback_id

	
register_on_serial_port_changed(callback)

	Set the callback function to consume on serial port changed events.

Callback receives a ISerialPortChangedEvent object.

Returns the callback_id

	
register_on_parallel_port_changed(callback)

	Set the callback function to consume on serial port changed events.

Callback receives a IParallelPortChangedEvent object.

Returns the callback_id

	
register_on_medium_changed(callback)

	Set the callback function to consume on medium changed events.

Callback receives a IMediumChangedEvent object.

Returns the callback_id

	
register_on_clipboard_mode_changed(callback)

	Set the callback function to consume on clipboard mode changed
events.

Callback receives a IClipboardModeChangedEvent object.

Returns the callback_id

	
register_on_drag_and_drop_mode_changed(callback)

	Set the callback function to consume on drag and drop mode changed
events.

Callback receives a IDragAndDropModeChangedEvent object.

Returns the callback_id

	
register_on_vrde_server_changed(callback)

	Set the callback function to consume on VirtualBox Remote Desktop
Extension (VRDE) changed events.

Callback receives a IVRDEServerChangedEvent object.

Returns the callback_id

	
register_on_shared_folder_changed(callback)

	Set the callback function to consume on shared folder changed events.

Callback receives a ISharedFolderChangedEvent object.

Returns the callback_id

	
register_on_additions_state_changed(callback)

	Set the callback function to consume on additions state changed
events.

Callback receives a IAdditionsStateChangedEvent object.

	Note: Interested callees should query IGuest attributes to find out

	what has changed.

Returns the callback_id

	
register_on_state_changed(callback)

	Set the callback function to consume on state changed events
which are generated when the state of the machine changes.

Callback receives a IStateChangeEvent object.

Returns the callback_id

	
register_on_event_source_changed(callback)

	Set the callback function to consume on event source changed
events. This occurs when a listener is added or removed.

Callback receives a IEventStateChangedEvent object.

Returns the callback_id

	
register_on_can_show_window(callback)

	Set the callback function to consume on can show window events.
This occurs when the console window is to be activated and brought to
the foreground of the desktop of the host PC. If this behaviour is
not desired a call to event.add_veto will stop this from happening.

Callback receives a ICanShowWindowEvent object.

Returns the callback_id

	
register_on_show_window(callback)

	Set the callback function to consume on show window events.
This occurs when the console window is to be activated and brought to
the foreground of the desktop of the host PC.

Callback receives a IShowWindowEvent object.

Returns the callback_id

	
add_disk_encryption_password(id_p, password, clear_on_suspend)

	Adds a password used for hard disk encryption/decryption.

	in id_p of type str

	The identifier used for the password. Must match the identifier
used when the encrypted medium was created.

	in password of type str

	The password.

	in clear_on_suspend of type bool

	Flag whether to clear the password on VM suspend (due to a suspending host
for example). The password must be supplied again before the VM can resume.

	raises VBoxErrorPasswordIncorrect

	The password provided wasn’t correct for at least one disk using the provided

ID.

	
add_disk_encryption_passwords(ids, passwords, clear_on_suspend)

	Adds a password used for hard disk encryption/decryption.

	in ids of type str

	List of identifiers for the passwords. Must match the identifier
used when the encrypted medium was created.

	in passwords of type str

	List of passwords.

	in clear_on_suspend of type bool

	Flag whether to clear the given passwords on VM suspend (due to a suspending host
for example). The passwords must be supplied again before the VM can resume.

	raises VBoxErrorPasswordIncorrect

	The password provided wasn’t correct for at least one disk using the provided

ID.

	
attach_usb_device(id_p, capture_filename)

	Attaches a host USB device with the given UUID to the
USB controller of the virtual machine.

The device needs to be in one of the following states:
USBDeviceState.busy ,
USBDeviceState.available or
USBDeviceState.held ,
otherwise an error is immediately returned.

When the device state is
USBDeviceState.busy Busy, an error may also
be returned if the host computer refuses to release it for some reason.

IUSBDeviceFilters.device_filters() ,
USBDeviceState

	in id_p of type str

	UUID of the host USB device to attach.

	in capture_filename of type str

	Filename to capture the USB traffic to.

	raises VBoxErrorInvalidVmState

	Virtual machine state neither Running nor Paused.

	raises VBoxErrorPdmError

	Virtual machine does not have a USB controller.

	
attached_pci_devices

	Get IPCIDeviceAttachment value for ‘attachedPCIDevices’
Array of PCI devices attached to this machine.

	
clear_all_disk_encryption_passwords()

	Clears all provided supplied disk encryption passwords.

	
create_shared_folder(name, host_path, writable, automount)

	Creates a transient new shared folder by associating the given logical
name with the given host path, adds it to the collection of shared
folders and starts sharing it. Refer to the description of
ISharedFolder to read more about logical names.

	in name of type str

	Unique logical name of the shared folder.

	in host_path of type str

	Full path to the shared folder in the host file system.

	in writable of type bool

	Whether the share is writable or readonly

	in automount of type bool

	Whether the share gets automatically mounted by the guest
or not.

	raises VBoxErrorInvalidVmState

	Virtual machine in Saved state or currently changing state.

	raises VBoxErrorFileError

	Shared folder already exists or not accessible.

	
debugger

	Get IMachineDebugger value for ‘debugger’
Debugging interface.

	
detach_usb_device(id_p)

	Detaches an USB device with the given UUID from the USB controller
of the virtual machine.

After this method succeeds, the VirtualBox server re-initiates
all USB filters as if the device were just physically attached
to the host, but filters of this machine are ignored to avoid
a possible automatic re-attachment.

IUSBDeviceFilters.device_filters() ,
USBDeviceState

	in id_p of type str

	UUID of the USB device to detach.

	return device of type IUSBDevice

	Detached USB device.

	raises VBoxErrorPdmError

	Virtual machine does not have a USB controller.

	raises OleErrorInvalidarg

	USB device not attached to this virtual machine.

	
display

	Get IDisplay value for ‘display’
Virtual display object.

If the machine is not running, any attempt to use
the returned object will result in an error.

	
emulated_usb

	Get IEmulatedUSB value for ‘emulatedUSB’
Interface that manages emulated USB devices.

	
event_source

	Get IEventSource value for ‘eventSource’
Event source for console events.

	
find_usb_device_by_address(name)

	Searches for a USB device with the given host address.

IUSBDevice.address()

	in name of type str

	Address of the USB device (as assigned by the host) to
search for.

	return device of type IUSBDevice

	Found USB device object.

	raises VBoxErrorObjectNotFound

	Given @c name does not correspond to any USB device.

	
find_usb_device_by_id(id_p)

	Searches for a USB device with the given UUID.

IUSBDevice.id_p()

	in id_p of type str

	UUID of the USB device to search for.

	return device of type IUSBDevice

	Found USB device object.

	raises VBoxErrorObjectNotFound

	Given @c id does not correspond to any USB device.

	
get_device_activity(type_p)

	Gets the current activity type of given devices or device groups.

in type_p of type DeviceType

return activity of type DeviceActivity

	raises OleErrorInvalidarg

	Invalid device type.

	
get_guest_entered_acpi_mode()

	Checks if the guest entered the ACPI mode G0 (working) or
G1 (sleeping). If this method returns @c false, the guest will
most likely not respond to external ACPI events.

return entered of type bool

	raises VBoxErrorInvalidVmState

	Virtual machine not in Running state.

	
get_power_button_handled()

	Checks if the last power button event was handled by guest.

return handled of type bool

	raises VBoxErrorPdmError

	Checking if the event was handled by the guest OS failed.

	
guest

	Get IGuest value for ‘guest’
Guest object.

	
keyboard

	Get IKeyboard value for ‘keyboard’
Virtual keyboard object.

If the machine is not running, any attempt to use
the returned object will result in an error.

	
machine

	Get IMachine value for ‘machine’
Machine object for this console session.

This is a convenience property, it has the same value as
ISession.machine() of the corresponding session
object.

	
mouse

	Get IMouse value for ‘mouse’
Virtual mouse object.

If the machine is not running, any attempt to use
the returned object will result in an error.

	
pause()

	Pauses the virtual machine execution.

	raises VBoxErrorInvalidVmState

	Virtual machine not in Running state.

	raises VBoxErrorVmError

	Virtual machine error in suspend operation.

	
power_button()

	Sends the ACPI power button event to the guest.

	raises VBoxErrorInvalidVmState

	Virtual machine not in Running state.

	raises VBoxErrorPdmError

	Controlled power off failed.

	
power_down()

	Initiates the power down procedure to stop the virtual machine
execution.

The completion of the power down procedure is tracked using the returned
IProgress object. After the operation is complete, the machine will go
to the PoweredOff state.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorInvalidVmState

	Virtual machine must be Running, Paused or Stuck to be powered down.

	
power_up()

	Starts the virtual machine execution using the current machine
state (that is, its current execution state, current settings and
current storage devices).

This method is only useful for front-ends that want to actually
execute virtual machines in their own process (like the VirtualBox
or VBoxSDL front-ends). Unless you are intending to write such a
front-end, do not call this method. If you simply want to
start virtual machine execution using one of the existing front-ends
(for example the VirtualBox GUI or headless server), use
IMachine.launch_vm_process() instead; these
front-ends will power up the machine automatically for you.

If the machine is powered off or aborted, the execution will
start from the beginning (as if the real hardware were just
powered on).

If the machine is in the MachineState.saved state,
it will continue its execution the point where the state has
been saved.

If the machine IMachine.teleporter_enabled() property is
enabled on the machine being powered up, the machine will wait for an
incoming teleportation in the MachineState.teleporting_in
state. The returned progress object will have at least three
operations where the last three are defined as: (1) powering up and
starting TCP server, (2) waiting for incoming teleportations, and
(3) perform teleportation. These operations will be reflected as the
last three operations of the progress objected returned by
IMachine.launch_vm_process() as well.

IMachine.save_state()

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorInvalidVmState

	Virtual machine already running.

	raises VBoxErrorHostError

	Host interface does not exist or name not set.

	raises VBoxErrorFileError

	Invalid saved state file.

	
power_up_paused()

	Identical to powerUp except that the VM will enter the
MachineState.paused state, instead of
MachineState.running .

power_up()

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorInvalidVmState

	Virtual machine already running.

	raises VBoxErrorHostError

	Host interface does not exist or name not set.

	raises VBoxErrorFileError

	Invalid saved state file.

	
remote_usb_devices

	Get IHostUSBDevice value for ‘remoteUSBDevices’
List of USB devices currently attached to the remote VRDE client.
Once a new device is physically attached to the remote host computer,
it appears in this list and remains there until detached.

	
remove_disk_encryption_password(id_p)

	Removes a password used for hard disk encryption/decryption from
the running VM. As soon as the medium requiring this password
is accessed the VM is paused with an error and the password must be
provided again.

	in id_p of type str

	The identifier used for the password. Must match the identifier
used when the encrypted medium was created.

	
remove_shared_folder(name)

	Removes a transient shared folder with the given name previously
created by create_shared_folder() from the collection of
shared folders and stops sharing it.

	in name of type str

	Logical name of the shared folder to remove.

	raises VBoxErrorInvalidVmState

	Virtual machine in Saved state or currently changing state.

	raises VBoxErrorFileError

	Shared folder does not exists.

	
reset()

	Resets the virtual machine.

	raises VBoxErrorInvalidVmState

	Virtual machine not in Running state.

	raises VBoxErrorVmError

	Virtual machine error in reset operation.

	
resume()

	Resumes the virtual machine execution.

	raises VBoxErrorInvalidVmState

	Virtual machine not in Paused state.

	raises VBoxErrorVmError

	Virtual machine error in resume operation.

	
shared_folders

	Get ISharedFolder value for ‘sharedFolders’
Collection of shared folders for the current session. These folders
are called transient shared folders because they are available to the
guest OS running inside the associated virtual machine only for the
duration of the session (as opposed to
IMachine.shared_folders() which represent permanent shared
folders). When the session is closed (e.g. the machine is powered down),
these folders are automatically discarded.

New shared folders are added to the collection using
create_shared_folder() . Existing shared folders can be
removed using remove_shared_folder() .

	
sleep_button()

	Sends the ACPI sleep button event to the guest.

	raises VBoxErrorInvalidVmState

	Virtual machine not in Running state.

	raises VBoxErrorPdmError

	Sending sleep button event failed.

	
state

	Get MachineState value for ‘state’
Current execution state of the machine.

This property always returns the same value as the corresponding
property of the IMachine object for this console session.
For the process that owns (executes) the VM, this is the
preferable way of querying the VM state, because no IPC
calls are made.

	
teleport(hostname, tcpport, password, max_downtime)

	Teleport the VM to a different host machine or process.

@todo Explain the details.

	in hostname of type str

	The name or IP of the host to teleport to.

	in tcpport of type int

	The TCP port to connect to (1..65535).

	in password of type str

	The password.

	in max_downtime of type int

	The maximum allowed downtime given as milliseconds. 0 is not a valid
value. Recommended value: 250 ms.

The higher the value is, the greater the chance for a successful
teleportation. A small value may easily result in the teleportation
process taking hours and eventually fail.

The current implementation treats this a guideline, not as an
absolute rule.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorInvalidVmState

	Virtual machine not running or paused.

	
usb_devices

	Get IUSBDevice value for ‘USBDevices’
Collection of USB devices currently attached to the virtual
USB controller.

The collection is empty if the machine is not running.

	
use_host_clipboard

	Get or set bool value for ‘useHostClipboard’
Whether the guest clipboard should be connected to the host one or
whether it should only be allowed access to the VRDE clipboard. This
setting may not affect existing guest clipboard connections which
are already connected to the host clipboard.

	
vrde_server_info

	Get IVRDEServerInfo value for ‘VRDEServerInfo’
Interface that provides information on Remote Desktop Extension (VRDE) connection.

	
class virtualbox.library.IEventSource(interface=None)

	Event source. Generally, any object which could generate events can be an event source,
or aggregate one. To simplify using one-way protocols such as webservices running on top of HTTP(S),
an event source can work with listeners in either active or passive mode. In active mode it is up to
the IEventSource implementation to call IEventListener.handle_event() , in passive mode the
event source keeps track of pending events for each listener and returns available events on demand.

See IEvent for an introduction to VirtualBox event handling.

	
register_callback(callback, event_type)

	register a callback function for the provided given event_type

	
create_aggregator(subordinates)

	Creates an aggregator event source, collecting events from multiple sources.
This way a single listener can listen for events coming from multiple sources,
using a single blocking get_event() on the returned aggregator.

	in subordinates of type IEventSource

	Subordinate event source this one aggregates.

	return result of type IEventSource

	Event source aggregating passed sources.

	
create_listener()

	Creates a new listener object, useful for passive mode.

return listener of type IEventListener

	
event_processed(listener, event)

	Must be called for waitable events after a particular listener finished its
event processing. When all listeners of a particular event have called this
method, the system will then call IEvent.set_processed() .

	in listener of type IEventListener

	Which listener processed event.

	in event of type IEvent

	Which event.

	
fire_event(event, timeout)

	Fire an event for this source.

	in event of type IEvent

	Event to deliver.

	in timeout of type int

	Maximum time to wait for event processing (if event is waitable), in ms;
0 = no wait, -1 = indefinite wait.

	return result of type bool

	true if an event was delivered to all targets, or is non-waitable.

	
get_event(listener, timeout)

	Get events from this peer’s event queue (for passive mode). Calling this method
regularly is required for passive event listeners to avoid system overload;
see IEventSource.register_listener() for details.

	in listener of type IEventListener

	Which listener to get data for.

	in timeout of type int

	Maximum time to wait for events, in ms;
0 = no wait, -1 = indefinite wait.

	return event of type IEvent

	Event retrieved, or null if none available.

	raises VBoxErrorObjectNotFound

	Listener is not registered, or autounregistered.

	
register_listener(listener, interesting, active)

	Register an event listener.

To avoid system overload, the VirtualBox server process checks if passive event
listeners call IEventSource.get_event() frequently enough. In the
current implementation, if more than 500 pending events are detected for a passive
event listener, it is forcefully unregistered by the system, and further
get_event() calls will return @c VBOX_E_OBJECT_NOT_FOUND.

	in listener of type IEventListener

	Listener to register.

	in interesting of type VBoxEventType

	Event types listener is interested in. One can use wildcards like -
VBoxEventType.any_p to specify wildcards, matching more
than one event.

	in active of type bool

	Which mode this listener is operating in.
In active mode, IEventListener.handle_event() is called directly.
In passive mode, an internal event queue is created for this this IEventListener.
For each event coming in, it is added to queues for all interested registered passive
listeners. It is then up to the external code to call the listener’s
IEventListener.handle_event() method. When done with an event, the
external code must call event_processed() .

	
unregister_listener(listener)

	Unregister an event listener. If listener is passive, and some waitable events are still
in queue they are marked as processed automatically.

	in listener of type IEventListener

	Listener to unregister.

	
class virtualbox.library.IMouse(interface=None)

	The IMouse interface represents the virtual machine’s mouse. Used in
IConsole.mouse() .

Through this interface, the virtual machine’s virtual mouse can be
controlled.

	
register_on_guest_mouse(callback)

	Set the callback function to consume on guest mouse events.

Callback receives a IGuestMouseEvent object.

	Example:

	
	def callback(event):

	print((“%s %s %s” % (event.x, event.y, event.z))

	
absolute_supported

	Get bool value for ‘absoluteSupported’
Whether the guest OS supports absolute mouse pointer positioning
or not.

You can use the IMouseCapabilityChangedEvent
event to be instantly informed about changes of this attribute
during virtual machine execution.

put_mouse_event_absolute()

	
event_source

	Get IEventSource value for ‘eventSource’
Event source for mouse events.

	
multi_touch_supported

	Get bool value for ‘multiTouchSupported’
Whether the guest OS has enabled the multi-touch reporting device.

You can use the IMouseCapabilityChangedEvent
event to be instantly informed about changes of this attribute
during virtual machine execution.

put_mouse_event()

	
needs_host_cursor

	Get bool value for ‘needsHostCursor’
Whether the guest OS can currently switch to drawing it’s own mouse
cursor on demand.

You can use the IMouseCapabilityChangedEvent
event to be instantly informed about changes of this attribute
during virtual machine execution.

put_mouse_event()

	
pointer_shape

	Get IMousePointerShape value for ‘pointerShape’
The current mouse pointer used by the guest.

	
put_event_multi_touch(count, contacts, scan_time)

	Sends a multi-touch pointer event. The coordinates are expressed in
pixels and start from [1,1] which corresponds to the top left
corner of the virtual display.

The guest may not understand or may choose to ignore this event.

multi_touch_supported()

	in count of type int

	Number of contacts in the event.

	in contacts of type int

	Each array element contains packed information about one contact.
Bits 0..15: X coordinate in pixels.
Bits 16..31: Y coordinate in pixels.
Bits 32..39: contact identifier.
Bit 40: “in contact” flag, which indicates that there is a contact with the touch surface.
Bit 41: “in range” flag, the contact is close enough to the touch surface.
All other bits are reserved for future use and must be set to 0.

	in scan_time of type int

	Timestamp of the event in milliseconds. Only relative time between events is important.

	raises OleErrorAccessdenied

	Console not powered up.

	raises VBoxErrorIprtError

	Could not send event to virtual device.

	
put_event_multi_touch_string(count, contacts, scan_time)

	put_event_multi_touch()

	in count of type int

	put_event_multi_touch()

	in contacts of type str

	Contains information about all contacts:
“id1,x1,y1,inContact1,inRange1;...;idN,xN,yN,inContactN,inRangeN”.
For example for two contacts: “0,10,20,1,1;1,30,40,1,1”

	in scan_time of type int

	put_event_multi_touch()

	
put_mouse_event(dx, dy, dz, dw, button_state)

	Initiates a mouse event using relative pointer movements
along x and y axis.

	in dx of type int

	Amount of pixels the mouse should move to the right.
Negative values move the mouse to the left.

	in dy of type int

	Amount of pixels the mouse should move downwards.
Negative values move the mouse upwards.

	in dz of type int

	Amount of mouse wheel moves.
Positive values describe clockwise wheel rotations,
negative values describe counterclockwise rotations.

	in dw of type int

	Amount of horizontal mouse wheel moves.
Positive values describe a movement to the left,
negative values describe a movement to the right.

	in button_state of type int

	The current state of mouse buttons. Every bit represents
a mouse button as follows:

Bit 0 (0x01)left mouse button
Bit 1 (0x02)right mouse button
Bit 2 (0x04)middle mouse button

A value of 1 means the corresponding button is pressed.
otherwise it is released.

	raises OleErrorAccessdenied

	Console not powered up.

	raises VBoxErrorIprtError

	Could not send mouse event to virtual mouse.

	
put_mouse_event_absolute(x, y, dz, dw, button_state)

	Positions the mouse pointer using absolute x and y coordinates.
These coordinates are expressed in pixels and
start from [1,1] which corresponds to the top left
corner of the virtual display.

This method will have effect only if absolute mouse
positioning is supported by the guest OS.

absolute_supported()

	in x of type int

	X coordinate of the pointer in pixels, starting from @c 1.

	in y of type int

	Y coordinate of the pointer in pixels, starting from @c 1.

	in dz of type int

	Amount of mouse wheel moves.
Positive values describe clockwise wheel rotations,
negative values describe counterclockwise rotations.

	in dw of type int

	Amount of horizontal mouse wheel moves.
Positive values describe a movement to the left,
negative values describe a movement to the right.

	in button_state of type int

	The current state of mouse buttons. Every bit represents
a mouse button as follows:

Bit 0 (0x01)left mouse button
Bit 1 (0x02)right mouse button
Bit 2 (0x04)middle mouse button

A value of @c 1 means the corresponding button is pressed.
otherwise it is released.

	raises OleErrorAccessdenied

	Console not powered up.

	raises VBoxErrorIprtError

	Could not send mouse event to virtual mouse.

	
relative_supported

	Get bool value for ‘relativeSupported’
Whether the guest OS supports relative mouse pointer positioning
or not.

You can use the IMouseCapabilityChangedEvent
event to be instantly informed about changes of this attribute
during virtual machine execution.

put_mouse_event()

	
class virtualbox.library.IProcess(interface=None)

	Abstract parent interface for processes handled by VirtualBox.

	
wait_for(wait_for, timeout_ms=0)

	Abstract parent interface for processes handled by VirtualBox.

	
arguments

	Get str value for ‘arguments’
The arguments this process is using for execution.

	
environment

	Get str value for ‘environment’
The initial process environment. Not yet implemented.

	
event_source

	Get IEventSource value for ‘eventSource’
Event source for process events.

	
executable_path

	Get str value for ‘executablePath’
Full path of the actual executable image.

	
exit_code

	Get int value for ‘exitCode’
The exit code. Only available when the process has been
terminated normally.

	
name

	Get str value for ‘name’
The friendly name of this process.

	
pid

	Get int value for ‘PID’
The process ID (PID).

	
read(handle, to_read, timeout_ms)

	Reads data from a running process.

	in handle of type int

	Handle to read from. Usually 0 is stdin.

	in to_read of type int

	Number of bytes to read.

	in timeout_ms of type int

	Timeout (in ms) to wait for the operation to complete.
Pass 0 for an infinite timeout.

	return data of type str

	Array of data read.

	
status

	Get ProcessStatus value for ‘status’
The current process status; see ProcessStatus
for more information.

	
terminate()

	Terminates (kills) a running process.
It can take up to 30 seconds to get a guest process killed. In
case a guest process could not be killed an appropriate error is
returned.

	
wait_for_array(wait_for, timeout_ms)

	Waits for one or more events to happen.
Scriptable version of wait_for() .

	in wait_for of type ProcessWaitForFlag

	Specifies what to wait for;
see ProcessWaitForFlag for more information.

	in timeout_ms of type int

	Timeout (in ms) to wait for the operation to complete.
Pass 0 for an infinite timeout.

	return reason of type ProcessWaitResult

	The overall wait result;
see ProcessWaitResult for more information.

	
write(handle, flags, data, timeout_ms)

	Writes data to a running process.

	in handle of type int

	Handle to write to. Usually 0 is stdin, 1 is stdout and 2 is stderr.

	in flags of type int

	A combination of ProcessInputFlag flags.

	in data of type str

	Array of bytes to write. The size of the array also specifies
how much to write.

	in timeout_ms of type int

	Timeout (in ms) to wait for the operation to complete.
Pass 0 for an infinite timeout.

	return written of type int

	How much bytes were written.

	
write_array(handle, flags, data, timeout_ms)

	Writes data to a running process.
Scriptable version of write() .

	in handle of type int

	Handle to write to. Usually 0 is stdin, 1 is stdout and 2 is stderr.

	in flags of type ProcessInputFlag

	A combination of ProcessInputFlag flags.

	in data of type str

	Array of bytes to write. The size of the array also specifies
how much to write.

	in timeout_ms of type int

	Timeout (in ms) to wait for the operation to complete.
Pass 0 for an infinite timeout.

	return written of type int

	How much bytes were written.

	
class virtualbox.library.IConsole(interface=None)

	The IConsole interface represents an interface to control virtual
machine execution.

A console object gets created when a machine has been locked for a
particular session (client process) using IMachine.lock_machine()
or IMachine.launch_vm_process() . The console object can
then be found in the session’s ISession.console() attribute.

Methods of the IConsole interface allow the caller to query the current
virtual machine execution state, pause the machine or power it down, save
the machine state or take a snapshot, attach and detach removable media
and so on.

ISession

	
register_on_network_adapter_changed(callback)

	Set the callback function to consume on network adapter changed
events.

Callback receives a INetworkAdapterChangedEvent object.

Returns the callback_id

	
register_on_serial_port_changed(callback)

	Set the callback function to consume on serial port changed events.

Callback receives a ISerialPortChangedEvent object.

Returns the callback_id

	
register_on_parallel_port_changed(callback)

	Set the callback function to consume on serial port changed events.

Callback receives a IParallelPortChangedEvent object.

Returns the callback_id

	
register_on_medium_changed(callback)

	Set the callback function to consume on medium changed events.

Callback receives a IMediumChangedEvent object.

Returns the callback_id

	
register_on_clipboard_mode_changed(callback)

	Set the callback function to consume on clipboard mode changed
events.

Callback receives a IClipboardModeChangedEvent object.

Returns the callback_id

	
register_on_drag_and_drop_mode_changed(callback)

	Set the callback function to consume on drag and drop mode changed
events.

Callback receives a IDragAndDropModeChangedEvent object.

Returns the callback_id

	
register_on_vrde_server_changed(callback)

	Set the callback function to consume on VirtualBox Remote Desktop
Extension (VRDE) changed events.

Callback receives a IVRDEServerChangedEvent object.

Returns the callback_id

	
register_on_shared_folder_changed(callback)

	Set the callback function to consume on shared folder changed events.

Callback receives a ISharedFolderChangedEvent object.

Returns the callback_id

	
register_on_additions_state_changed(callback)

	Set the callback function to consume on additions state changed
events.

Callback receives a IAdditionsStateChangedEvent object.

	Note: Interested callees should query IGuest attributes to find out

	what has changed.

Returns the callback_id

	
register_on_state_changed(callback)

	Set the callback function to consume on state changed events
which are generated when the state of the machine changes.

Callback receives a IStateChangeEvent object.

Returns the callback_id

	
register_on_event_source_changed(callback)

	Set the callback function to consume on event source changed
events. This occurs when a listener is added or removed.

Callback receives a IEventStateChangedEvent object.

Returns the callback_id

	
register_on_can_show_window(callback)

	Set the callback function to consume on can show window events.
This occurs when the console window is to be activated and brought to
the foreground of the desktop of the host PC. If this behaviour is
not desired a call to event.add_veto will stop this from happening.

Callback receives a ICanShowWindowEvent object.

Returns the callback_id

	
register_on_show_window(callback)

	Set the callback function to consume on show window events.
This occurs when the console window is to be activated and brought to
the foreground of the desktop of the host PC.

Callback receives a IShowWindowEvent object.

Returns the callback_id

	
add_disk_encryption_password(id_p, password, clear_on_suspend)

	Adds a password used for hard disk encryption/decryption.

	in id_p of type str

	The identifier used for the password. Must match the identifier
used when the encrypted medium was created.

	in password of type str

	The password.

	in clear_on_suspend of type bool

	Flag whether to clear the password on VM suspend (due to a suspending host
for example). The password must be supplied again before the VM can resume.

	raises VBoxErrorPasswordIncorrect

	The password provided wasn’t correct for at least one disk using the provided

ID.

	
add_disk_encryption_passwords(ids, passwords, clear_on_suspend)

	Adds a password used for hard disk encryption/decryption.

	in ids of type str

	List of identifiers for the passwords. Must match the identifier
used when the encrypted medium was created.

	in passwords of type str

	List of passwords.

	in clear_on_suspend of type bool

	Flag whether to clear the given passwords on VM suspend (due to a suspending host
for example). The passwords must be supplied again before the VM can resume.

	raises VBoxErrorPasswordIncorrect

	The password provided wasn’t correct for at least one disk using the provided

ID.

	
attach_usb_device(id_p, capture_filename)

	Attaches a host USB device with the given UUID to the
USB controller of the virtual machine.

The device needs to be in one of the following states:
USBDeviceState.busy ,
USBDeviceState.available or
USBDeviceState.held ,
otherwise an error is immediately returned.

When the device state is
USBDeviceState.busy Busy, an error may also
be returned if the host computer refuses to release it for some reason.

IUSBDeviceFilters.device_filters() ,
USBDeviceState

	in id_p of type str

	UUID of the host USB device to attach.

	in capture_filename of type str

	Filename to capture the USB traffic to.

	raises VBoxErrorInvalidVmState

	Virtual machine state neither Running nor Paused.

	raises VBoxErrorPdmError

	Virtual machine does not have a USB controller.

	
attached_pci_devices

	Get IPCIDeviceAttachment value for ‘attachedPCIDevices’
Array of PCI devices attached to this machine.

	
clear_all_disk_encryption_passwords()

	Clears all provided supplied disk encryption passwords.

	
create_shared_folder(name, host_path, writable, automount)

	Creates a transient new shared folder by associating the given logical
name with the given host path, adds it to the collection of shared
folders and starts sharing it. Refer to the description of
ISharedFolder to read more about logical names.

	in name of type str

	Unique logical name of the shared folder.

	in host_path of type str

	Full path to the shared folder in the host file system.

	in writable of type bool

	Whether the share is writable or readonly

	in automount of type bool

	Whether the share gets automatically mounted by the guest
or not.

	raises VBoxErrorInvalidVmState

	Virtual machine in Saved state or currently changing state.

	raises VBoxErrorFileError

	Shared folder already exists or not accessible.

	
debugger

	Get IMachineDebugger value for ‘debugger’
Debugging interface.

	
detach_usb_device(id_p)

	Detaches an USB device with the given UUID from the USB controller
of the virtual machine.

After this method succeeds, the VirtualBox server re-initiates
all USB filters as if the device were just physically attached
to the host, but filters of this machine are ignored to avoid
a possible automatic re-attachment.

IUSBDeviceFilters.device_filters() ,
USBDeviceState

	in id_p of type str

	UUID of the USB device to detach.

	return device of type IUSBDevice

	Detached USB device.

	raises VBoxErrorPdmError

	Virtual machine does not have a USB controller.

	raises OleErrorInvalidarg

	USB device not attached to this virtual machine.

	
display

	Get IDisplay value for ‘display’
Virtual display object.

If the machine is not running, any attempt to use
the returned object will result in an error.

	
emulated_usb

	Get IEmulatedUSB value for ‘emulatedUSB’
Interface that manages emulated USB devices.

	
event_source

	Get IEventSource value for ‘eventSource’
Event source for console events.

	
find_usb_device_by_address(name)

	Searches for a USB device with the given host address.

IUSBDevice.address()

	in name of type str

	Address of the USB device (as assigned by the host) to
search for.

	return device of type IUSBDevice

	Found USB device object.

	raises VBoxErrorObjectNotFound

	Given @c name does not correspond to any USB device.

	
find_usb_device_by_id(id_p)

	Searches for a USB device with the given UUID.

IUSBDevice.id_p()

	in id_p of type str

	UUID of the USB device to search for.

	return device of type IUSBDevice

	Found USB device object.

	raises VBoxErrorObjectNotFound

	Given @c id does not correspond to any USB device.

	
get_device_activity(type_p)

	Gets the current activity type of given devices or device groups.

in type_p of type DeviceType

return activity of type DeviceActivity

	raises OleErrorInvalidarg

	Invalid device type.

	
get_guest_entered_acpi_mode()

	Checks if the guest entered the ACPI mode G0 (working) or
G1 (sleeping). If this method returns @c false, the guest will
most likely not respond to external ACPI events.

return entered of type bool

	raises VBoxErrorInvalidVmState

	Virtual machine not in Running state.

	
get_power_button_handled()

	Checks if the last power button event was handled by guest.

return handled of type bool

	raises VBoxErrorPdmError

	Checking if the event was handled by the guest OS failed.

	
guest

	Get IGuest value for ‘guest’
Guest object.

	
keyboard

	Get IKeyboard value for ‘keyboard’
Virtual keyboard object.

If the machine is not running, any attempt to use
the returned object will result in an error.

	
machine

	Get IMachine value for ‘machine’
Machine object for this console session.

This is a convenience property, it has the same value as
ISession.machine() of the corresponding session
object.

	
mouse

	Get IMouse value for ‘mouse’
Virtual mouse object.

If the machine is not running, any attempt to use
the returned object will result in an error.

	
pause()

	Pauses the virtual machine execution.

	raises VBoxErrorInvalidVmState

	Virtual machine not in Running state.

	raises VBoxErrorVmError

	Virtual machine error in suspend operation.

	
power_button()

	Sends the ACPI power button event to the guest.

	raises VBoxErrorInvalidVmState

	Virtual machine not in Running state.

	raises VBoxErrorPdmError

	Controlled power off failed.

	
power_down()

	Initiates the power down procedure to stop the virtual machine
execution.

The completion of the power down procedure is tracked using the returned
IProgress object. After the operation is complete, the machine will go
to the PoweredOff state.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorInvalidVmState

	Virtual machine must be Running, Paused or Stuck to be powered down.

	
power_up()

	Starts the virtual machine execution using the current machine
state (that is, its current execution state, current settings and
current storage devices).

This method is only useful for front-ends that want to actually
execute virtual machines in their own process (like the VirtualBox
or VBoxSDL front-ends). Unless you are intending to write such a
front-end, do not call this method. If you simply want to
start virtual machine execution using one of the existing front-ends
(for example the VirtualBox GUI or headless server), use
IMachine.launch_vm_process() instead; these
front-ends will power up the machine automatically for you.

If the machine is powered off or aborted, the execution will
start from the beginning (as if the real hardware were just
powered on).

If the machine is in the MachineState.saved state,
it will continue its execution the point where the state has
been saved.

If the machine IMachine.teleporter_enabled() property is
enabled on the machine being powered up, the machine will wait for an
incoming teleportation in the MachineState.teleporting_in
state. The returned progress object will have at least three
operations where the last three are defined as: (1) powering up and
starting TCP server, (2) waiting for incoming teleportations, and
(3) perform teleportation. These operations will be reflected as the
last three operations of the progress objected returned by
IMachine.launch_vm_process() as well.

IMachine.save_state()

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorInvalidVmState

	Virtual machine already running.

	raises VBoxErrorHostError

	Host interface does not exist or name not set.

	raises VBoxErrorFileError

	Invalid saved state file.

	
power_up_paused()

	Identical to powerUp except that the VM will enter the
MachineState.paused state, instead of
MachineState.running .

power_up()

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorInvalidVmState

	Virtual machine already running.

	raises VBoxErrorHostError

	Host interface does not exist or name not set.

	raises VBoxErrorFileError

	Invalid saved state file.

	
remote_usb_devices

	Get IHostUSBDevice value for ‘remoteUSBDevices’
List of USB devices currently attached to the remote VRDE client.
Once a new device is physically attached to the remote host computer,
it appears in this list and remains there until detached.

	
remove_disk_encryption_password(id_p)

	Removes a password used for hard disk encryption/decryption from
the running VM. As soon as the medium requiring this password
is accessed the VM is paused with an error and the password must be
provided again.

	in id_p of type str

	The identifier used for the password. Must match the identifier
used when the encrypted medium was created.

	
remove_shared_folder(name)

	Removes a transient shared folder with the given name previously
created by create_shared_folder() from the collection of
shared folders and stops sharing it.

	in name of type str

	Logical name of the shared folder to remove.

	raises VBoxErrorInvalidVmState

	Virtual machine in Saved state or currently changing state.

	raises VBoxErrorFileError

	Shared folder does not exists.

	
reset()

	Resets the virtual machine.

	raises VBoxErrorInvalidVmState

	Virtual machine not in Running state.

	raises VBoxErrorVmError

	Virtual machine error in reset operation.

	
resume()

	Resumes the virtual machine execution.

	raises VBoxErrorInvalidVmState

	Virtual machine not in Paused state.

	raises VBoxErrorVmError

	Virtual machine error in resume operation.

	
shared_folders

	Get ISharedFolder value for ‘sharedFolders’
Collection of shared folders for the current session. These folders
are called transient shared folders because they are available to the
guest OS running inside the associated virtual machine only for the
duration of the session (as opposed to
IMachine.shared_folders() which represent permanent shared
folders). When the session is closed (e.g. the machine is powered down),
these folders are automatically discarded.

New shared folders are added to the collection using
create_shared_folder() . Existing shared folders can be
removed using remove_shared_folder() .

	
sleep_button()

	Sends the ACPI sleep button event to the guest.

	raises VBoxErrorInvalidVmState

	Virtual machine not in Running state.

	raises VBoxErrorPdmError

	Sending sleep button event failed.

	
state

	Get MachineState value for ‘state’
Current execution state of the machine.

This property always returns the same value as the corresponding
property of the IMachine object for this console session.
For the process that owns (executes) the VM, this is the
preferable way of querying the VM state, because no IPC
calls are made.

	
teleport(hostname, tcpport, password, max_downtime)

	Teleport the VM to a different host machine or process.

@todo Explain the details.

	in hostname of type str

	The name or IP of the host to teleport to.

	in tcpport of type int

	The TCP port to connect to (1..65535).

	in password of type str

	The password.

	in max_downtime of type int

	The maximum allowed downtime given as milliseconds. 0 is not a valid
value. Recommended value: 250 ms.

The higher the value is, the greater the chance for a successful
teleportation. A small value may easily result in the teleportation
process taking hours and eventually fail.

The current implementation treats this a guideline, not as an
absolute rule.

	return progress of type IProgress

	Progress object to track the operation completion.

	raises VBoxErrorInvalidVmState

	Virtual machine not running or paused.

	
usb_devices

	Get IUSBDevice value for ‘USBDevices’
Collection of USB devices currently attached to the virtual
USB controller.

The collection is empty if the machine is not running.

	
use_host_clipboard

	Get or set bool value for ‘useHostClipboard’
Whether the guest clipboard should be connected to the host one or
whether it should only be allowed access to the VRDE clipboard. This
setting may not affect existing guest clipboard connections which
are already connected to the host clipboard.

	
vrde_server_info

	Get IVRDEServerInfo value for ‘VRDEServerInfo’
Interface that provides information on Remote Desktop Extension (VRDE) connection.

	
class virtualbox.library.IAppliance(interface=None)

	Represents a platform-independent appliance in OVF format. An instance of this is returned
by IVirtualBox.create_appliance() , which can then be used to import and export
virtual machines within an appliance with VirtualBox.

The OVF standard suggests two different physical file formats:

If the appliance is distributed as a set of files, there must be at least one XML descriptor
file that conforms to the OVF standard and carries an .ovf file extension. If
this descriptor file references other files such as disk images, as OVF appliances typically
do, those additional files must be in the same directory as the descriptor file.

If the appliance is distributed as a single file, it must be in TAR format and have the
.ova file extension. This TAR file must then contain at least the OVF descriptor
files and optionally other files.

At this time, VirtualBox does not not yet support the packed (TAR) variant; support will
be added with a later version.

Importing an OVF appliance into VirtualBox as instances of
IMachine involves the following sequence of API calls:

Call IVirtualBox.create_appliance() . This will create an empty IAppliance object.

On the new object, call read() with the full path of the OVF file you
would like to import. So long as this file is syntactically valid, this will succeed
and fill the appliance object with the parsed data from the OVF file.

Next, call interpret() , which analyzes the OVF data and sets up the
contents of the IAppliance attributes accordingly. These can be inspected by a
VirtualBox front-end such as the GUI, and the suggestions can be displayed to the
user. In particular, the virtual_system_descriptions() array contains
instances of IVirtualSystemDescription which represent the virtual
systems (machines) in the OVF, which in turn describe the virtual hardware prescribed
by the OVF (network and hardware adapters, virtual disk images, memory size and so on).
The GUI can then give the user the option to confirm and/or change these suggestions.

If desired, call IVirtualSystemDescription.set_final_values() for each
virtual system (machine) to override the suggestions made by the interpret() routine.

Finally, call import_machines() to create virtual machines in
VirtualBox as instances of IMachine that match the information in the
virtual system descriptions. After this call succeeded, the UUIDs of the machines created
can be found in the machines() array attribute.

Exporting VirtualBox machines into an OVF appliance involves the following steps:

As with importing, first call IVirtualBox.create_appliance() to create
an empty IAppliance object.

For each machine you would like to export, call IMachine.export_to()
with the IAppliance object you just created. Each such call creates one instance of
IVirtualSystemDescription inside the appliance.

If desired, call IVirtualSystemDescription.set_final_values() for each
virtual system (machine) to override the suggestions made by the IMachine.export_to() routine.

Finally, call write() with a path specification to have the OVF
file written.

	
read(ova_path)

	Reads an OVF file into the appliance object.

This method succeeds if the OVF is syntactically valid and, by itself, without errors. The
mere fact that this method returns successfully does not mean that VirtualBox supports all
features requested by the appliance; this can only be examined after a call to interpret() .

	in file_p of type str

	Name of appliance file to open (either with an .ovf or .ova extension, depending
on whether the appliance is distributed as a set of files or as a single file, respectively).

	return progress of type IProgress

	Progress object to track the operation completion.

	
find_description(name)

	Find a description for the given appliance name.

	
import_machines(options=None)

	Imports the appliance into VirtualBox by creating instances of IMachine
and other interfaces that match the information contained in the appliance as
closely as possible, as represented by the import instructions in the
virtual_system_descriptions() array.

Calling this method is the final step of importing an appliance into VirtualBox;
see IAppliance for an overview.

Since importing the appliance will most probably involve copying and converting
disk images, which can take a long time, this method operates asynchronously and
returns an IProgress object to allow the caller to monitor the progress.

After the import succeeded, the UUIDs of the IMachine instances created can be
retrieved from the machines() array attribute.

	in options of type ImportOptions

	Options for the importing operation.

	return progress of type IProgress

	Progress object to track the operation completion.

	
add_passwords(identifiers, passwords)

	Adds a list of passwords required to import or export encrypted virtual
machines.

	in identifiers of type str

	List of identifiers.

	in passwords of type str

	List of matching passwords.

	
certificate

	Get ICertificate value for ‘certificate’
The X.509 signing certificate, if the imported OVF was signed, @c null
if not signed. This is available after calling read() .

	
create_vfs_explorer(uri)

	Returns a IVFSExplorer object for the given URI.

	in uri of type str

	The URI describing the file system to use.

return explorer of type IVFSExplorer

	
disks

	Get str value for ‘disks’
Array of virtual disk definitions. One such description exists for each
disk definition in the OVF; each string array item represents one such piece of
disk information, with the information fields separated by tab (t) characters.

The caller should be prepared for additional fields being appended to
this string in future versions of VirtualBox and therefore check for
the number of tabs in the strings returned.

In the current version, the following eight fields are returned per string
in the array:

Disk ID (unique string identifier given to disk)

Capacity (unsigned integer indicating the maximum capacity of the disk)

Populated size (optional unsigned integer indicating the current size of the
disk; can be approximate; -1 if unspecified)

Format (string identifying the disk format, typically
“http://www.vmware.com/specifications/vmdk.html#sparse”)

Reference (where to find the disk image, typically a file name; if empty,
then the disk should be created on import)

Image size (optional unsigned integer indicating the size of the image,
which need not necessarily be the same as the values specified above, since
the image may be compressed or sparse; -1 if not specified)

Chunk size (optional unsigned integer if the image is split into chunks;
presently unsupported and always -1)

Compression (optional string equaling “gzip” if the image is gzip-compressed)

	
get_medium_ids_for_password_id(password_id)

	Returns a list of medium identifiers which use the given password identifier.

	in password_id of type str

	The password identifier to get the medium identifiers for.

	return identifiers of type str

	The list of medium identifiers returned on success.

	
get_password_ids()

	Returns a list of password identifiers which must be supplied to import or export
encrypted virtual machines.

	return identifiers of type str

	The list of password identifiers required for export on success.

	
get_warnings()

	Returns textual warnings which occurred during execution of interpret() .

return warnings of type str

	
interpret()

	Interprets the OVF data that was read when the appliance was constructed. After
calling this method, one can inspect the
virtual_system_descriptions() array attribute, which will then contain
one IVirtualSystemDescription for each virtual machine found in
the appliance.

Calling this method is the second step of importing an appliance into VirtualBox;
see IAppliance for an overview.

After calling this method, one should call get_warnings() to find out
if problems were encountered during the processing which might later lead to
errors.

	
machines

	Get str value for ‘machines’
Contains the UUIDs of the machines created from the information in this appliances. This is only
relevant for the import case, and will only contain data after a call to import_machines()
succeeded.

	
path

	Get str value for ‘path’
Path to the main file of the OVF appliance, which is either the .ovf or
the .ova file passed to read() (for import) or
write() (for export).
This attribute is empty until one of these methods has been called.

	
virtual_system_descriptions

	Get IVirtualSystemDescription value for ‘virtualSystemDescriptions’
Array of virtual system descriptions. One such description is created
for each virtual system (machine) found in the OVF.
This array is empty until either interpret() (for import) or IMachine.export_to()
(for export) has been called.

	
write(format_p, options, path)

	Writes the contents of the appliance exports into a new OVF file.

Calling this method is the final step of exporting an appliance from VirtualBox;
see IAppliance for an overview.

Since exporting the appliance will most probably involve copying and converting
disk images, which can take a long time, this method operates asynchronously and
returns an IProgress object to allow the caller to monitor the progress.

	in format_p of type str

	Output format, as a string. Currently supported formats are “ovf-0.9”, “ovf-1.0”
and “ovf-2.0”; future versions of VirtualBox may support additional formats.

	in options of type ExportOptions

	Options for the exporting operation.

	in path of type str

	Name of appliance file to open (either with an .ovf or .ova extension, depending
on whether the appliance is distributed as a set of files or as a single file, respectively).

	return progress of type IProgress

	Progress object to track the operation completion.

	
class virtualbox.library.IVirtualSystemDescription(interface=None)

	Represents one virtual system (machine) in an appliance. This interface is used in
the IAppliance.virtual_system_descriptions() array. After
IAppliance.interpret() has been called, that array contains information
about how the virtual systems described in the OVF should best be imported into
VirtualBox virtual machines. See IAppliance for the steps required to
import an OVF into VirtualBox.

	
set_final_value(description_type, value)

	Set the value for the given description type.

in description_type type VirtualSystemDescriptionType

in value type str

	
set_name(value)

	Set the name of the appliance (name of machine when imported).

	
set_cpu(value)

	Set cpu value.

	
set_memory(value)

	Set memory value.

	
set_soundcard(value)

	Set soundcard value.

	
set_usb_controller(value)

	Set usb controller value.

	
set_network_adapter(value)

	Set network_adapter value.

	
set_cdrom(value)

	Set cdrom value.

	
set_hard_disk_controller_ide(value)

	Set hard_disk_controller_ide value.

	
set_hard_disk_controller_sas(value)

	Set hard_disk_controller_sas value.

	
set_hard_disk_controller_sata(value)

	Set hard_disk_controller_sata value.

	
set_hard_disk_controller_scsi(value)

	Set hard_disk_controller_scsi value.

	
set_hard_disk_image(value)

	Set hard_disk_image value.

	
add_description(type_p, v_box_value, extra_config_value)

	This method adds an additional description entry to the stack of already
available descriptions for this virtual system. This is handy for writing
values which aren’t directly supported by VirtualBox. One example would
be the License type of VirtualSystemDescriptionType .

in type_p of type VirtualSystemDescriptionType

in v_box_value of type str

in extra_config_value of type str

	
count

	Get int value for ‘count’
Return the number of virtual system description entries.

	
get_description()

	Returns information about the virtual system as arrays of instruction items. In each array, the
items with the same indices correspond and jointly represent an import instruction for VirtualBox.

The list below identifies the value sets that are possible depending on the
VirtualSystemDescriptionType enum value in the array item in @a aTypes[]. In each case,
the array item with the same index in @a OVFValues[] will contain the original value as contained
in the OVF file (just for informational purposes), and the corresponding item in @a aVBoxValues[]
will contain a suggested value to be used for VirtualBox. Depending on the description type,
the @a aExtraConfigValues[] array item may also be used.

“OS”: the guest operating system type. There must be exactly one such array item on import. The
corresponding item in @a aVBoxValues[] contains the suggested guest operating system for VirtualBox.
This will be one of the values listed in IVirtualBox.guest_os_types() . The corresponding
item in @a OVFValues[] will contain a numerical value that described the operating system in the OVF.

“Name”: the name to give to the new virtual machine. There can be at most one such array item;
if none is present on import, then an automatic name will be created from the operating system
type. The corresponding item im @a OVFValues[] will contain the suggested virtual machine name
from the OVF file, and @a aVBoxValues[] will contain a suggestion for a unique VirtualBox
IMachine name that does not exist yet.

“Description”: an arbitrary description.

“License”: the EULA section from the OVF, if present. It is the responsibility of the calling
code to display such a license for agreement; the Main API does not enforce any such policy.

Miscellaneous: reserved for future use.

“CPU”: the number of CPUs. There can be at most one such item, which will presently be ignored.

“Memory”: the amount of guest RAM, in bytes. There can be at most one such array item; if none
is present on import, then VirtualBox will set a meaningful default based on the operating system
type.

“HardDiskControllerIDE”: an IDE hard disk controller. There can be at most two such items.
An optional value in @a OVFValues[] and @a aVBoxValues[] can be “PIIX3” or “PIIX4” to specify
the type of IDE controller; this corresponds to the ResourceSubType element which VirtualBox
writes into the OVF.
The matching item in the @a aRefs[] array will contain an integer that items of the “Harddisk”
type can use to specify which hard disk controller a virtual disk should be connected to.
Note that in OVF, an IDE controller has two channels, corresponding to “master” and “slave”
in traditional terminology, whereas the IDE storage controller that VirtualBox supports in
its virtual machines supports four channels (primary master, primary slave, secondary master,
secondary slave) and thus maps to two IDE controllers in the OVF sense.

“HardDiskControllerSATA”: an SATA hard disk controller. There can be at most one such item. This
has no value in @a OVFValues[] or @a aVBoxValues[].
The matching item in the @a aRefs[] array will be used as with IDE controllers (see above).

“HardDiskControllerSCSI”: a SCSI hard disk controller. There can be at most one such item.
The items in @a OVFValues[] and @a aVBoxValues[] will either be “LsiLogic”, “BusLogic” or
“LsiLogicSas”. (Note that in OVF, the LsiLogicSas controller is treated as a SCSI controller
whereas VirtualBox considers it a class of storage controllers of its own; see
StorageControllerType).
The matching item in the @a aRefs[] array will be used as with IDE controllers (see above).

“HardDiskImage”: a virtual hard disk, most probably as a reference to an image file. There can be an
arbitrary number of these items, one for each virtual disk image that accompanies the OVF.

The array item in @a OVFValues[] will contain the file specification from the OVF file (without
a path since the image file should be in the same location as the OVF file itself), whereas the
item in @a aVBoxValues[] will contain a qualified path specification to where VirtualBox uses the
hard disk image. This means that on import the image will be copied and converted from the
“ovf” location to the “vbox” location; on export, this will be handled the other way round.

The matching item in the @a aExtraConfigValues[] array must contain a string of the following
format: “controller=<index>;channel=<c>”
In this string, <index> must be an integer specifying the hard disk controller to connect
the image to. That number must be the index of an array item with one of the hard disk controller
types (HardDiskControllerSCSI, HardDiskControllerSATA, HardDiskControllerIDE).
In addition, <c> must specify the channel to use on that controller. For IDE controllers,
this can be 0 or 1 for master or slave, respectively. For compatibility with VirtualBox versions
before 3.2, the values 2 and 3 (for secondary master and secondary slave) are also supported, but
no longer exported. For SATA and SCSI controllers, the channel can range from 0-29.

“CDROM”: a virtual CD-ROM drive. The matching item in @a aExtraConfigValue[] contains the same
attachment information as with “HardDiskImage” items.

“CDROM”: a virtual floppy drive. The matching item in @a aExtraConfigValue[] contains the same
attachment information as with “HardDiskImage” items.

“NetworkAdapter”: a network adapter. The array item in @a aVBoxValues[] will specify the hardware
for the network adapter, whereas the array item in @a aExtraConfigValues[] will have a string
of the “type=<X>” format, where <X> must be either “NAT” or “Bridged”.

“USBController”: a USB controller. There can be at most one such item. If, and only if, such an
item is present, USB support will be enabled for the new virtual machine.

“SoundCard”: a sound card. There can be at most one such item. If and only if such an item is
present, sound support will be enabled for the new virtual machine. Note that the virtual
machine in VirtualBox will always be presented with the standard VirtualBox soundcard, which
may be different from the virtual soundcard expected by the appliance.

out types of type VirtualSystemDescriptionType

out refs of type str

out ovf_values of type str

out v_box_values of type str

out extra_config_values of type str

	
get_description_by_type(type_p)

	This is the same as get_description() except that you can specify which types
should be returned.

in type_p of type VirtualSystemDescriptionType

out types of type VirtualSystemDescriptionType

out refs of type str

out ovf_values of type str

out v_box_values of type str

out extra_config_values of type str

	
get_values_by_type(type_p, which)

	This is the same as get_description_by_type() except that you can specify which
value types should be returned. See VirtualSystemDescriptionValueType for possible
values.

in type_p of type VirtualSystemDescriptionType

in which of type VirtualSystemDescriptionValueType

return values of type str

	
set_final_values(enabled, v_box_values, extra_config_values)

	This method allows the appliance’s user to change the configuration for the virtual
system descriptions. For each array item returned from get_description() ,
you must pass in one boolean value and one configuration value.

Each item in the boolean array determines whether the particular configuration item
should be enabled.
You can only disable items of the types HardDiskControllerIDE, HardDiskControllerSATA,
HardDiskControllerSCSI, HardDiskImage, CDROM, Floppy, NetworkAdapter, USBController
and SoundCard.

For the “vbox” and “extra configuration” values, if you pass in the same arrays
as returned in the aVBoxValues and aExtraConfigValues arrays from get_description() ,
the configuration remains unchanged. Please see the documentation for get_description()
for valid configuration values for the individual array item types. If the
corresponding item in the aEnabled array is @c false, the configuration value is ignored.

in enabled of type bool

in v_box_values of type str

in extra_config_values of type str

virtualbox.library_base – base types used by library.py

The virtualbox.library_base provides the base types used by
virtualbox.library.

This module provides the base types used by virtualbox.library.

	
class virtualbox.library_base.EnumType(name, bases, dct)

	EnumType is a metaclass for Enum. It is responsible for configuring
the Enum class object’s values defined in Enum.lookup_label

	
virtualbox.library_base.add_metaclass(metaclass)

	Class decorator for creating a class with a metaclass.

	
class virtualbox.library_base.Enum(value)

	Enum objects provide a container for VirtualBox enumerations

	
exception virtualbox.library_base.VBoxError

	Generic VBoxError

	
class virtualbox.library_base.Interface(interface=None)

	Interface objects provide a wrapper for the VirtualBox COM objects

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 virtualbox	
 pyvbox

 	
 	
 virtualbox.events	
 pyvbox

 	
 	
 virtualbox.library	

 	
 	
 virtualbox.library_base	

 	
 	
 virtualbox.library_ext	
 pyvbox

 	
 	
 virtualbox.pool	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

_

 	
 	__str__() (virtualbox.library_ext.IProgress method)

 	
 	__weakref__ (virtualbox.Manager attribute)

A

 	
 	abandon() (virtualbox.library.IToken method)

 	aborted (virtualbox.library.MachineState attribute)

 	absolute (virtualbox.library.GuestMouseEventMode attribute)

 	absolute_supported (virtualbox.library.IMouse attribute)

 	accelerate2_d_video_enabled (virtualbox.library.IMachine attribute)

 	accelerate3_d_enabled (virtualbox.library.IMachine attribute)

 	access_error (virtualbox.library.IMachine attribute)

 	access_guest_property() (virtualbox.library.IInternalSessionControl method)

 	access_mode (virtualbox.library.IFile attribute)

 	access_time (virtualbox.library.IFsObjInfo attribute)

 	accessible (virtualbox.library.IMachine attribute)

 	(virtualbox.library.ISharedFolder attribute)

 	AccessMode (class in virtualbox.library)

 	acpi_enabled (virtualbox.library.IBIOSSettings attribute)

 	acpi_shutdown (virtualbox.library.AutostopType attribute)

 	acquire() (virtualbox.pool.MachinePool method)

 	action (virtualbox.library.IHostUSBDeviceFilter attribute)

 	active (virtualbox.library.AdditionsFacilityStatus attribute)

 	(virtualbox.library.IUSBDeviceFilter attribute)

 	(virtualbox.library.IVRDEServerInfo attribute)

 	ad1980 (virtualbox.library.AudioCodecType attribute)

 	adapter_type (virtualbox.library.INetworkAdapter attribute)

 	add (virtualbox.library.ICPUChangedEvent attribute)

 	(virtualbox.library.IEventSourceChangedEvent attribute)

 	add_approval() (virtualbox.library.IVetoEvent method)

 	add_description() (virtualbox.library.IVirtualSystemDescription method)

 	add_disk_encryption_password() (virtualbox.library.IConsole method), [1]

 	add_disk_encryption_passwords() (virtualbox.library.IConsole method), [1]

 	add_formats() (virtualbox.library.IDnDBase method)

 	add_global_option() (virtualbox.library.IDHCPServer method)

 	add_local_mapping() (virtualbox.library.INATNetwork method)

 	add_metaclass() (in module virtualbox.library_base)

 	add_passwords() (virtualbox.library.IAppliance method)

 	add_port_forward_rule() (virtualbox.library.INATNetwork method)

 	add_redirect() (virtualbox.library.INATEngine method)

 	add_storage_controller() (virtualbox.library.IMachine method)

 	add_usb_controller() (virtualbox.library.IMachine method)

 	add_veto() (virtualbox.library.IVetoEvent method)

 	add_vm_slot_option() (virtualbox.library.IDHCPServer method)

 	additions_revision (virtualbox.library.IGuest attribute)

 	additions_run_level (virtualbox.library.IGuest attribute)

 	additions_version (virtualbox.library.IGuest attribute)

 	AdditionsFacilityClass (class in virtualbox.library)

 	AdditionsFacilityStatus (class in virtualbox.library)

 	AdditionsFacilityType (class in virtualbox.library)

 	AdditionsRunLevelType (class in virtualbox.library)

 	AdditionsUpdateFlag (class in virtualbox.library)

 	address (virtualbox.library.IUSBDevice attribute)

 	adopt_saved_state() (virtualbox.library.IMachine method)

 	advertise_default_i_pv6_route_enabled (virtualbox.library.INATNetwork attribute)

 	alias (virtualbox.library.IHostVideoInputDevice attribute)

 	alias_mode (virtualbox.library.INATEngine attribute)

 	all_p (virtualbox.library.AdditionsFacilityClass attribute)

 	(virtualbox.library.AdditionsFacilityType attribute)

 	(virtualbox.library.FileSharingMode attribute)

 	all_states (virtualbox.library.CloneMode attribute)

 	allocated_size (virtualbox.library.IFsObjInfo attribute)

 	allow_all (virtualbox.library.NetworkAdapterPromiscModePolicy attribute)

 	allow_directory_moves (virtualbox.library.FsObjMoveFlags attribute)

 	
 	allow_multi_connection (virtualbox.library.IVRDEServer attribute)

 	allow_network (virtualbox.library.NetworkAdapterPromiscModePolicy attribute)

 	allow_tracing_to_access_vm (virtualbox.library.IMachine attribute)

 	allowed_types (virtualbox.library.IMedium attribute)

 	alpha (virtualbox.library.IFramebufferOverlay attribute)

 	(virtualbox.library.IMousePointerShape attribute)

 	(virtualbox.library.IMousePointerShapeChangedEvent attribute)

 	alsa (virtualbox.library.AudioDriverType attribute)

 	am79_c970_a (virtualbox.library.NetworkAdapterType attribute)

 	am79_c973 (virtualbox.library.NetworkAdapterType attribute)

 	any_p (virtualbox.library.VBoxEventType attribute)

 	api_revision (virtualbox.library.IVirtualBox attribute)

 	api_version (virtualbox.library.IVirtualBox attribute)

 	apic (virtualbox.library.CPUPropertyType attribute)

 	apic_mode (virtualbox.library.IBIOSSettings attribute)

 	APICMode (class in virtualbox.library)

 	append_only (virtualbox.library.FileAccessMode attribute)

 	append_or_create (virtualbox.library.FileOpenAction attribute)

 	append_read (virtualbox.library.FileAccessMode attribute)

 	apply_defaults() (virtualbox.library.IMachine method)

 	apply_p (virtualbox.library.ScreenLayoutMode attribute)

 	arguments (virtualbox.library.IGuestProcess attribute)

 	(virtualbox.library.IProcess attribute)

 	as_long() (virtualbox.library.IPCIAddress method)

 	assign_machine() (virtualbox.library.IInternalSessionControl method)

 	assign_remote_machine() (virtualbox.library.IInternalSessionControl method)

 	asynchronous (virtualbox.library.MediumFormatCapabilities attribute)

 	attach_device() (virtualbox.library.IMachine method)

 	attach_device_without_medium() (virtualbox.library.IMachine method)

 	attach_framebuffer() (virtualbox.library.IDisplay method)

 	attach_host_pci_device() (virtualbox.library.IMachine method)

 	attach_usb_device() (virtualbox.library.IConsole method), [1]

 	attached (virtualbox.library.IUSBDeviceStateChangedEvent attribute)

 	attached_pci_devices (virtualbox.library.IConsole attribute), [1]

 	attachment (virtualbox.library.IHostPCIDevicePlugEvent attribute)

 	attachment_type (virtualbox.library.INetworkAdapter attribute)

 	audio_adapter (virtualbox.library.IMachine attribute)

 	audio_codec (virtualbox.library.IAudioAdapter attribute)

 	audio_controller (virtualbox.library.IAudioAdapter attribute)

 	audio_driver (virtualbox.library.IAudioAdapter attribute)

 	AudioCodecType (class in virtualbox.library)

 	AudioControllerType (class in virtualbox.library)

 	AudioDriverType (class in virtualbox.library)

 	auth_library (virtualbox.library.IVRDEServer attribute)

 	auth_timeout (virtualbox.library.IVRDEServer attribute)

 	auth_type (virtualbox.library.IVRDEServer attribute)

 	authenticate_external() (virtualbox.library.IInternalMachineControl method)

 	AuthType (class in virtualbox.library)

 	auto_capture_usb_devices() (virtualbox.library.IInternalMachineControl method)

 	auto_logon (virtualbox.library.AdditionsFacilityType attribute)

 	auto_mount (virtualbox.library.ISharedFolder attribute)

 	auto_reset (virtualbox.library.IMedium attribute)

 	autostart_database_path (virtualbox.library.ISystemProperties attribute)

 	autostart_delay (virtualbox.library.IMachine attribute)

 	autostart_enabled (virtualbox.library.IMachine attribute)

 	autostop_type (virtualbox.library.IMachine attribute)

 	AutostopType (class in virtualbox.library)

 	available (virtualbox.library.IVBoxSVCAvailabilityChangedEvent attribute)

 	(virtualbox.library.ProcessInputStatus attribute)

 	(virtualbox.library.USBDeviceState attribute)

B

 	
 	backend (virtualbox.library.IUSBDevice attribute)

 	bandwidth_control (virtualbox.library.IMachine attribute)

 	bandwidth_group (virtualbox.library.IBandwidthGroupChangedEvent attribute)

 	(virtualbox.library.IMediumAttachment attribute)

 	(virtualbox.library.INetworkAdapter attribute)

 	BandwidthGroupType (class in virtualbox.library)

 	base (virtualbox.library.IMedium attribute)

 	begin (virtualbox.library.FileSeekOrigin attribute)

 	begin_power_up() (virtualbox.library.IInternalMachineControl method)

 	begin_powering_down() (virtualbox.library.IInternalMachineControl method)

 	begin_time (virtualbox.library.IVRDEServerInfo attribute)

 	bgr (virtualbox.library.BitmapFormat attribute)

 	bgr0 (virtualbox.library.BitmapFormat attribute)

 	bgra (virtualbox.library.BitmapFormat attribute)

 	bin_path (virtualbox.Manager attribute)

 	bios (virtualbox.library.FirmwareType attribute)

 	bios_settings (virtualbox.library.IMachine attribute)

 	BIOSBootMenuMode (class in virtualbox.library)

 	
 	birth_time (virtualbox.library.IFsObjInfo attribute)

 	BitmapFormat (class in virtualbox.library)

 	bits_per_pixel (virtualbox.library.IFramebuffer attribute)

 	blank (virtualbox.library.GuestMonitorStatus attribute)

 	boot_menu_mode (virtualbox.library.IBIOSSettings attribute)

 	boot_priority (virtualbox.library.INetworkAdapter attribute)

 	bootable (virtualbox.library.IStorageController attribute)

 	bridged_interface (virtualbox.library.INetworkAdapter attribute)

 	broken (virtualbox.library.ProcessInputStatus attribute)

 	bus (virtualbox.library.IPCIAddress attribute)

 	(virtualbox.library.IStorageController attribute)

 	bus_logic (virtualbox.library.StorageControllerType attribute)

 	busy (virtualbox.library.USBDeviceState attribute)

 	buttons (virtualbox.library.IGuestMouseEvent attribute)

 	bytes_per_line (virtualbox.library.IFramebuffer attribute)

 	bytes_received (virtualbox.library.IVRDEServerInfo attribute)

 	bytes_received_total (virtualbox.library.IVRDEServerInfo attribute)

 	bytes_sent (virtualbox.library.IVRDEServerInfo attribute)

 	bytes_sent_total (virtualbox.library.IVRDEServerInfo attribute)

C

 	
 	cable_connected (virtualbox.library.INetworkAdapter attribute)

 	can_show_console_window() (virtualbox.library.IMachine method)

 	cancel() (virtualbox.library.IDnDTarget method)

 	(virtualbox.library.IProgress method)

 	cancel_save_state_with_reason() (virtualbox.library.IInternalSessionControl method)

 	cancelable (virtualbox.library.IProgress attribute)

 	canceled (virtualbox.library.IProgress attribute)

 	capabilities (virtualbox.library.IFramebuffer attribute)

 	(virtualbox.library.IMediumFormat attribute)

 	caps_lock (virtualbox.library.IKeyboardLedsChangedEvent attribute)

 	capture_usb_device() (virtualbox.library.IInternalMachineControl method)

 	captured (virtualbox.library.USBDeviceState attribute)

 	cast_object() (virtualbox.Manager method)

 	cd() (virtualbox.library.IVFSExplorer method)

 	cd_up() (virtualbox.library.IVFSExplorer method)

 	certificate (virtualbox.library.IAppliance attribute)

 	certificate_authority (virtualbox.library.ICertificate attribute)

 	CertificateVersion (class in virtualbox.library)

 	change_encryption() (virtualbox.library.IMedium method)

 	change_time (virtualbox.library.IFsObjInfo attribute)

 	change_type (virtualbox.library.IGuestMonitorChangedEvent attribute)

 	check_encryption_password() (virtualbox.library.IMedium method)

 	check_firmware_present() (virtualbox.library.IVirtualBox method)

 	check_machine_error() (virtualbox.library.IVirtualBoxClient method)

 	children (virtualbox.library.IMedium attribute)

 	(virtualbox.library.ISnapshot attribute)

 	chipset_type (virtualbox.library.IMachine attribute)

 	ChipsetType (class in virtualbox.library)

 	class_type (virtualbox.library.IAdditionsFacility attribute)

 	cleanup() (virtualbox.library.IExtPackManager method)

 	CleanupMode (class in virtualbox.library)

 	clear_all_disk_encryption_passwords() (virtualbox.library.IConsole method), [1]

 	client_ip (virtualbox.library.IVRDEServerInfo attribute)

 	client_name (virtualbox.library.IVRDEServerInfo attribute)

 	client_version (virtualbox.library.IVRDEServerInfo attribute)

 	clipboard_mode (virtualbox.library.IClipboardModeChangedEvent attribute)

 	(virtualbox.library.IMachine attribute)

 	ClipboardMode (class in virtualbox.library)

 	clone() (virtualbox.library.IMachine method)

 	(virtualbox.library_ext.IMachine method)

 	clone_to() (virtualbox.library.IMachine method)

 	(virtualbox.library.IMedium method)

 	clone_to_base() (virtualbox.library.IMedium method)

 	CloneMode (class in virtualbox.library)

 	CloneOptions (class in virtualbox.library)

 	close() (virtualbox.library.IDirectory method)

 	(virtualbox.library.IFile method)

 	(virtualbox.library.IGuestSession method)

 	(virtualbox.library.IMedium method)

 	closed (virtualbox.library.FileStatus attribute)

 	closing (virtualbox.library.FileStatus attribute)

 	combo_keyboard (virtualbox.library.KeyboardHIDType attribute)

 	combo_mouse (virtualbox.library.PointingHIDType attribute)

 	compact() (virtualbox.library.IMedium method)

 	complete_vhwa_command() (virtualbox.library.IDisplay method)

 	completed (virtualbox.library.IProgress attribute)

 	
 	component (virtualbox.library.IVirtualBoxErrorInfo attribute)

 	compose_machine_filename() (virtualbox.library.IVirtualBox method)

 	console (virtualbox.library.ISession attribute)

 	contact_count (virtualbox.library.IGuestMultiTouchEvent attribute)

 	contact_flags (virtualbox.library.IGuestMultiTouchEvent attribute)

 	contact_ids (virtualbox.library.IGuestMultiTouchEvent attribute)

 	content_and_dir (virtualbox.library.DirectoryRemoveRecFlag attribute)

 	content_only (virtualbox.library.DirectoryRemoveRecFlag attribute)

 	controller (virtualbox.library.IMediumAttachment attribute)

 	controller_type (virtualbox.library.IStorageController attribute)

 	copy (virtualbox.library.DnDAction attribute)

 	copy_into_existing (virtualbox.library.DirectoryCopyFlags attribute)

 	core_audio (virtualbox.library.AudioDriverType attribute)

 	count (virtualbox.library.IPerformanceMetric attribute)

 	(virtualbox.library.IVirtualSystemDescription attribute)

 	cpu (virtualbox.library.ICPUChangedEvent attribute)

 	cpu_count (virtualbox.library.IMachine attribute)

 	cpu_execution_cap (virtualbox.library.IMachine attribute)

 	cpu_hot_plug_enabled (virtualbox.library.IMachine attribute)

 	cpu_profile (virtualbox.library.IMachine attribute)

 	cpuid_portability_level (virtualbox.library.IMachine attribute)

 	CPUPropertyType (class in virtualbox.library)

 	create_aggregator() (virtualbox.library.IEventSource method)

 	create_appliance() (virtualbox.library.IVirtualBox method)

 	create_bandwidth_group() (virtualbox.library.IBandwidthControl method)

 	create_base_storage() (virtualbox.library.IMedium method)

 	create_device_filter() (virtualbox.library.IUSBDeviceFilters method)

 	create_dhcp_server() (virtualbox.library.IVirtualBox method)

 	create_diff_storage() (virtualbox.library.IMedium method)

 	create_dynamic (virtualbox.library.MediumFormatCapabilities attribute)

 	create_fixed (virtualbox.library.MediumFormatCapabilities attribute)

 	create_listener() (virtualbox.library.IEventSource method)

 	create_machine() (virtualbox.library.IVirtualBox method)

 	create_manifest (virtualbox.library.ExportOptions attribute)

 	create_medium() (virtualbox.library.IVirtualBox method)

 	create_nat_network() (virtualbox.library.IVirtualBox method)

 	create_new (virtualbox.library.FileOpenAction attribute)

 	create_or_replace (virtualbox.library.FileOpenAction attribute)

 	create_session() (virtualbox.library.IGuest method)

 	(virtualbox.library.IMachine method)

 	(virtualbox.library_ext.IGuest method)

 	(virtualbox.library_ext.IMachine method)

 	create_shared_folder() (virtualbox.library.IConsole method), [1]

 	(virtualbox.library.IMachine method)

 	(virtualbox.library.IVirtualBox method)

 	create_split2_g (virtualbox.library.MediumFormatCapabilities attribute)

 	create_vfs_explorer() (virtualbox.library.IAppliance method)

 	created (virtualbox.library.GuestUserState attribute)

 	(virtualbox.library.MediumState attribute)

 	creating (virtualbox.library.MediumState attribute)

 	creation_mode (virtualbox.library.IFile attribute)

 	credentials_changed (virtualbox.library.GuestUserState attribute)

 	csam_enabled (virtualbox.library.IMachineDebugger attribute)

 	current (virtualbox.library.FileSeekOrigin attribute)

 	current_directory (virtualbox.library.IGuestSession attribute)

 	current_snapshot (virtualbox.library.IMachine attribute)

 	current_state_modified (virtualbox.library.IMachine attribute)

D

 	
 	data (virtualbox.library.IGuestFileReadEvent attribute)

 	(virtualbox.library.IGuestProcessOutputEvent attribute)

 	DataFlags (class in virtualbox.library)

 	DataType (class in virtualbox.library)

 	debugger (virtualbox.library.IConsole attribute), [1]

 	default (virtualbox.library.ParavirtProvider attribute)

 	(virtualbox.library.ProcessPriority attribute)

 	default_additions_iso (virtualbox.library.ISystemProperties attribute)

 	default_audio_driver (virtualbox.library.ISystemProperties attribute)

 	default_frontend (virtualbox.library.IMachine attribute)

 	(virtualbox.library.ISystemProperties attribute)

 	default_hard_disk_format (virtualbox.library.ISystemProperties attribute)

 	default_machine_folder (virtualbox.library.ISystemProperties attribute)

 	default_vrde_ext_pack (virtualbox.library.ISystemProperties attribute)

 	delete (virtualbox.library.FileSharingMode attribute)

 	delete_bandwidth_group() (virtualbox.library.IBandwidthControl method)

 	delete_config() (virtualbox.library.IMachine method)

 	(virtualbox.library_ext.IMachine method)

 	delete_guest_property() (virtualbox.library.IMachine method)

 	delete_snapshot() (virtualbox.library.IMachine method)

 	delete_snapshot_and_all_children() (virtualbox.library.IMachine method)

 	delete_snapshot_range() (virtualbox.library.IMachine method)

 	delete_storage() (virtualbox.library.IMedium method)

 	deleted (virtualbox.library.GuestUserState attribute)

 	deleting (virtualbox.library.MediumState attribute)

 	deleting_snapshot (virtualbox.library.MachineState attribute)

 	deleting_snapshot_online (virtualbox.library.MachineState attribute)

 	deleting_snapshot_paused (virtualbox.library.MachineState attribute)

 	deny (virtualbox.library.NetworkAdapterPromiscModePolicy attribute)

 	describe_file_extensions() (virtualbox.library.IMediumFormat method)

 	describe_properties() (virtualbox.library.IMediumFormat method)

 	description (virtualbox.library.IExtPackBase attribute)

 	(virtualbox.library.IExtPackPlugIn attribute)

 	(virtualbox.library.IMachine attribute)

 	(virtualbox.library.IMedium attribute)

 	(virtualbox.library.IPerformanceMetric attribute)

 	(virtualbox.library.IProgress attribute)

 	(virtualbox.library.ISnapshot attribute)

 	desktop (virtualbox.library.AdditionsRunLevelType attribute)

 	detach_all_return_hard_disks_only (virtualbox.library.CleanupMode attribute)

 	detach_all_return_none (virtualbox.library.CleanupMode attribute)

 	detach_all_usb_devices() (virtualbox.library.IInternalMachineControl method)

 	detach_device() (virtualbox.library.IMachine method)

 	detach_framebuffer() (virtualbox.library.IDisplay method)

 	detach_host_pci_device() (virtualbox.library.IMachine method)

 	detach_usb_device() (virtualbox.library.IConsole method), [1]

 	(virtualbox.library.IInternalMachineControl method)

 	detect_os() (virtualbox.library.IMachineDebugger method)

 	dev_block (virtualbox.library.FsObjType attribute)

 	dev_char (virtualbox.library.FsObjType attribute)

 	dev_function (virtualbox.library.IPCIAddress attribute)

 	device (virtualbox.library.IMediumAttachment attribute)

 	(virtualbox.library.IPCIAddress attribute)

 	(virtualbox.library.IUSBDeviceStateChangedEvent attribute)

 	device_filters (virtualbox.library.IUSBDeviceFilters attribute)

 	device_info (virtualbox.library.IUSBDevice attribute)

 	device_number (virtualbox.library.IFsObjInfo attribute)

 	device_type (virtualbox.library.IMedium attribute)

 	DeviceActivity (class in virtualbox.library)

 	DeviceType (class in virtualbox.library)

 	dhcp_enabled (virtualbox.library.IHostNetworkInterface attribute)

 	dhcp_rediscover() (virtualbox.library.IHostNetworkInterface method)

 	dhcp_servers (virtualbox.library.IVirtualBox attribute)

 	
 	DhcpOpt (class in virtualbox.library)

 	DhcpOptEncoding (class in virtualbox.library)

 	diff (virtualbox.library.MediumVariant attribute)

 	differencing (virtualbox.library.MediumFormatCapabilities attribute)

 	direct_sound (virtualbox.library.AudioDriverType attribute)

 	directories (virtualbox.library.IGuestSession attribute)

 	directory (virtualbox.library.FsObjType attribute)

 	(virtualbox.library.SymlinkType attribute)

 	directory_copy() (virtualbox.library.IGuestSession method)

 	directory_copy_from_guest() (virtualbox.library.IGuestSession method)

 	directory_copy_to_guest() (virtualbox.library.IGuestSession method)

 	directory_create() (virtualbox.library.IGuestSession method)

 	directory_create_temp() (virtualbox.library.IGuestSession method)

 	directory_exists() (virtualbox.library.IGuestSession method)

 	directory_name (virtualbox.library.IDirectory attribute)

 	directory_open() (virtualbox.library.IGuestSession method)

 	directory_remove() (virtualbox.library.IGuestSession method)

 	directory_remove_recursive() (virtualbox.library.IGuestSession method)

 	DirectoryCopyFlags (class in virtualbox.library)

 	DirectoryCreateFlag (class in virtualbox.library)

 	DirectoryOpenFlag (class in virtualbox.library)

 	DirectoryRemoveRecFlag (class in virtualbox.library)

 	disable_metrics() (virtualbox.library.IPerformanceCollector method)

 	disabled (virtualbox.library.AutostopType attribute)

 	(virtualbox.library.GuestMonitorChangedEventType attribute)

 	(virtualbox.library.GuestMonitorStatus attribute)

 	(virtualbox.library.GuestUserState attribute)

 	discard (virtualbox.library.IMediumAttachment attribute)

 	(virtualbox.library.MediumFormatCapabilities attribute)

 	discard_saved_state() (virtualbox.library.IMachine method)

 	discard_settings() (virtualbox.library.IMachine method)

 	disconnected (virtualbox.library.PortMode attribute)

 	disk (virtualbox.library.BandwidthGroupType attribute)

 	disks (virtualbox.library.IAppliance attribute)

 	display (virtualbox.library.IConsole attribute), [1]

 	dn_d_mode (virtualbox.library.IMachine attribute)

 	dn_d_source (virtualbox.library.IGuest attribute)

 	dn_d_target (virtualbox.library.IGuest attribute)

 	dnd_mode (virtualbox.library.IDnDModeChangedEvent attribute)

 	DnDAction (class in virtualbox.library)

 	DnDMode (class in virtualbox.library)

 	dns_pass_domain (virtualbox.library.INATEngine attribute)

 	dns_proxy (virtualbox.library.INATEngine attribute)

 	dns_use_host_resolver (virtualbox.library.INATEngine attribute)

 	domain (virtualbox.library.IGuestSession attribute)

 	(virtualbox.library.IGuestUserStateChangedEvent attribute)

 	(virtualbox.library.IVRDEServerInfo attribute)

 	dos (virtualbox.library.PathStyle attribute)

 	down (virtualbox.library.FileStatus attribute)

 	(virtualbox.library.GuestSessionStatus attribute)

 	(virtualbox.library.HostNetworkInterfaceStatus attribute)

 	(virtualbox.library.ProcessStatus attribute)

 	drag_is_pending() (virtualbox.library.IDnDSource method)

 	draw_to_screen() (virtualbox.library.IDisplay method)

 	driver (virtualbox.library.AdditionsFacilityClass attribute)

 	drop() (virtualbox.library.IDnDSource method)

 	(virtualbox.library.IDnDTarget method)

 	dummy() (virtualbox.library.IToken method)

 	dump_guest_core() (virtualbox.library.IMachineDebugger method)

 	dump_guest_stack() (virtualbox.library.IMachineDebugger method)

 	dump_host_process_core() (virtualbox.library.IMachineDebugger method)

 	dump_stats() (virtualbox.library.IMachineDebugger method)

 	dvd (virtualbox.library.DeviceType attribute)

 	dvd_images (virtualbox.library.IVirtualBox attribute)

E

 	
 	edition (virtualbox.library.IExtPackBase attribute)

 	efi (virtualbox.library.FirmwareType attribute)

 	efi32 (virtualbox.library.FirmwareType attribute)

 	efi64 (virtualbox.library.FirmwareType attribute)

 	efidual (virtualbox.library.FirmwareType attribute)

 	eject_medium() (virtualbox.library.IInternalMachineControl method)

 	elevated (virtualbox.library.GuestUserState attribute)

 	emulated_usb (virtualbox.library.IConsole attribute), [1]

 	emulated_usb_card_reader_enabled (virtualbox.library.IMachine attribute)

 	enable_dynamic_ip_config() (virtualbox.library.IHostNetworkInterface method)

 	enable_metrics() (virtualbox.library.IPerformanceCollector method)

 	enable_static_ip_config() (virtualbox.library.IHostNetworkInterface method)

 	enable_static_ip_config_v6() (virtualbox.library.IHostNetworkInterface method)

 	enable_vmm_statistics() (virtualbox.library.IInternalSessionControl method)

 	enabled (virtualbox.library.GuestMonitorChangedEventType attribute)

 	(virtualbox.library.GuestMonitorStatus attribute)

 	(virtualbox.library.HWVirtExPropertyType attribute)

 	(virtualbox.library.IAudioAdapter attribute)

 	(virtualbox.library.IDHCPServer attribute)

 	(virtualbox.library.INATNetwork attribute)

 	(virtualbox.library.INetworkAdapter attribute)

 	(virtualbox.library.IParallelPort attribute)

 	(virtualbox.library.ISerialPort attribute)

 	(virtualbox.library.IVRDEServer attribute)

 	enabled_in (virtualbox.library.IAudioAdapter attribute)

 	enabled_out (virtualbox.library.IAudioAdapter attribute)

 	encryption_style (virtualbox.library.IVRDEServerInfo attribute)

 	end (virtualbox.library.FileSeekOrigin attribute)

 	end_of_file (virtualbox.library.ProcessInputFlag attribute)

 	end_power_up() (virtualbox.library.IInternalMachineControl method)

 	end_powering_down() (virtualbox.library.IInternalMachineControl method)

 	end_time (virtualbox.library.IVRDEServerInfo attribute)

 	enter() (virtualbox.library.IDnDTarget method)

 	entry_list() (virtualbox.library.IVFSExplorer method)

 	Enum (class in virtualbox.library_base)

 	enumerate_guest_properties() (virtualbox.library.IInternalSessionControl method)

 	(virtualbox.library.IMachine method)

 	EnumType (class in virtualbox.library_base)

 	environment (virtualbox.library.IGuestProcess attribute)

 	(virtualbox.library.IProcess attribute)

 	environment_base (virtualbox.library.IGuestSession attribute)

 	environment_changes (virtualbox.library.IGuestSession attribute)

 	environment_does_base_variable_exist() (virtualbox.library.IGuestSession method)

 	
 	environment_get_base_variable() (virtualbox.library.IGuestSession method)

 	environment_schedule_set() (virtualbox.library.IGuestSession method)

 	environment_schedule_unset() (virtualbox.library.IGuestSession method)

 	error (virtualbox.library.FileStatus attribute)

 	(virtualbox.library.GuestSessionStatus attribute)

 	(virtualbox.library.GuestSessionWaitResult attribute)

 	(virtualbox.library.IGuestFileStateChangedEvent attribute)

 	(virtualbox.library.IGuestProcessStateChangedEvent attribute)

 	(virtualbox.library.IGuestSessionStateChangedEvent attribute)

 	(virtualbox.library.IUSBDeviceStateChangedEvent attribute)

 	(virtualbox.library.ProcessStatus attribute)

 	(virtualbox.library.ProcessWaitResult attribute)

 	error_info (virtualbox.library.IProgress attribute)

 	ethernet (virtualbox.library.HostNetworkInterfaceMediumType attribute)

 	event_processed() (virtualbox.library.IEventSource method)

 	event_source (virtualbox.library.IConsole attribute), [1]

 	(virtualbox.library.IDHCPServer attribute)

 	(virtualbox.library.IFile attribute)

 	(virtualbox.library.IGuest attribute)

 	(virtualbox.library.IGuestProcess attribute)

 	(virtualbox.library.IGuestSession attribute)

 	(virtualbox.library.IKeyboard attribute)

 	(virtualbox.library.IMouse attribute)

 	(virtualbox.library.INATNetwork attribute)

 	(virtualbox.library.IProcess attribute)

 	(virtualbox.library.IVirtualBox attribute)

 	(virtualbox.library.IVirtualBoxClient attribute)

 	exclusive_hw_virt (virtualbox.library.ISystemProperties attribute)

 	executable_path (virtualbox.library.IGuestProcess attribute)

 	(virtualbox.library.IProcess attribute)

 	execute() (virtualbox.library.IGuestSession method)

 	(virtualbox.library_ext.IGuestSession method)

 	execute_all_in_iem (virtualbox.library.IMachineDebugger attribute)

 	execution_cap (virtualbox.library.ICPUExecutionCapChangedEvent attribute)

 	exists() (virtualbox.library.IVFSExplorer method)

 	exit_code (virtualbox.library.IGuestProcess attribute)

 	(virtualbox.library.IProcess attribute)

 	expand_arguments (virtualbox.library.ProcessCreateFlag attribute)

 	expired (virtualbox.library.ICertificate attribute)

 	export_dvd_images (virtualbox.library.ExportOptions attribute)

 	export_to() (virtualbox.library.IMachine method)

 	ExportOptions (class in virtualbox.library)

 	extended_key_usage (virtualbox.library.ICertificate attribute)

 	extension_pack_manager (virtualbox.library.IVirtualBox attribute)

F

 	
 	facilities (virtualbox.library.IGuest attribute)

 	failed (virtualbox.library.AdditionsFacilityStatus attribute)

 	fatal (virtualbox.library.IRuntimeErrorEvent attribute)

 	fault_tolerance_address (virtualbox.library.IMachine attribute)

 	fault_tolerance_password (virtualbox.library.IMachine attribute)

 	fault_tolerance_port (virtualbox.library.IMachine attribute)

 	fault_tolerance_state (virtualbox.library.IMachine attribute)

 	fault_tolerance_sync_interval (virtualbox.library.IMachine attribute)

 	fault_tolerant_syncing (virtualbox.library.MachineState attribute)

 	FaultToleranceState (class in virtualbox.library)

 	feature (virtualbox.library.AdditionsFacilityClass attribute)

 	fifo (virtualbox.library.FsObjType attribute)

 	file_attributes (virtualbox.library.IFsObjInfo attribute)

 	file_copy() (virtualbox.library.IGuestSession method)

 	file_copy_from_guest() (virtualbox.library.IGuestSession method)

 	file_copy_to_guest() (virtualbox.library.IGuestSession method)

 	file_create_temp() (virtualbox.library.IGuestSession method)

 	file_exists() (virtualbox.library.IGuestSession method)

 	file_name (virtualbox.library.IFile attribute)

 	file_open() (virtualbox.library.IGuestSession method)

 	file_open_ex() (virtualbox.library.IGuestSession method)

 	file_p (virtualbox.library.FsObjType attribute)

 	(virtualbox.library.IGuestFileEvent attribute)

 	(virtualbox.library.MediumFormatCapabilities attribute)

 	(virtualbox.library.SymlinkType attribute)

 	file_path (virtualbox.library.IExtPackFile attribute)

 	file_query_size() (virtualbox.library.IGuestSession method)

 	FileAccessMode (class in virtualbox.library)

 	FileCopyFlag (class in virtualbox.library)

 	FileOpenAction (class in virtualbox.library)

 	FileOpenExFlags (class in virtualbox.library)

 	files (virtualbox.library.IGuestSession attribute)

 	FileSeekOrigin (class in virtualbox.library)

 	FileSharingMode (class in virtualbox.library)

 	FileStatus (class in virtualbox.library)

 	filter_p (virtualbox.library.IDirectory attribute)

 	find() (virtualbox.library.IExtPackManager method)

 	find_description() (virtualbox.library.IAppliance method)

 	find_dhcp_server_by_network_name() (virtualbox.library.IVirtualBox method)

 	find_machine() (virtualbox.library.IVirtualBox method)

 	
 	find_nat_network_by_name() (virtualbox.library.IVirtualBox method)

 	find_session() (virtualbox.library.IGuest method)

 	find_snapshot() (virtualbox.library.IMachine method)

 	find_usb_device_by_address() (virtualbox.library.IConsole method), [1]

 	find_usb_device_by_id() (virtualbox.library.IConsole method), [1]

 	finish_online_merge_medium() (virtualbox.library.IInternalMachineControl method)

 	fire_event() (virtualbox.library.IEventSource method)

 	firmware_type (virtualbox.library.IMachine attribute)

 	FirmwareType (class in virtualbox.library)

 	first_online (virtualbox.library.MachineState attribute)

 	first_transient (virtualbox.library.MachineState attribute)

 	fixed (virtualbox.library.MediumVariant attribute)

 	flags (virtualbox.library.IGuestPropertyChangedEvent attribute)

 	floppy (virtualbox.library.DeviceType attribute)

 	floppy_images (virtualbox.library.IVirtualBox attribute)

 	follow_links (virtualbox.library.FileCopyFlag attribute)

 	(virtualbox.library.FsObjMoveFlags attribute)

 	force (virtualbox.library.HWVirtExPropertyType attribute)

 	format_p (virtualbox.library.IMedium attribute)

 	formats (virtualbox.library.IDnDBase attribute)

 	FramebufferCapabilities (class in virtualbox.library)

 	free_disk_space_error (virtualbox.library.ISystemProperties attribute)

 	free_disk_space_percent_error (virtualbox.library.ISystemProperties attribute)

 	free_disk_space_percent_warning (virtualbox.library.ISystemProperties attribute)

 	free_disk_space_warning (virtualbox.library.ISystemProperties attribute)

 	friendly_name (virtualbox.library.ICertificate attribute)

 	from_long() (virtualbox.library.IPCIAddress method)

 	frontend (virtualbox.library.IExtPackPlugIn attribute)

 	fs_obj_exists() (virtualbox.library.IGuestSession method)

 	fs_obj_move() (virtualbox.library.IGuestSession method)

 	fs_obj_query_info() (virtualbox.library.IGuestSession method)

 	fs_obj_remove() (virtualbox.library.IGuestSession method)

 	fs_obj_rename() (virtualbox.library.IGuestSession method)

 	fs_obj_set_acl() (virtualbox.library.IGuestSession method)

 	FsObjMoveFlags (class in virtualbox.library)

 	FsObjRenameFlag (class in virtualbox.library)

 	FsObjType (class in virtualbox.library)

 	full (virtualbox.library.CleanupMode attribute)

 	(virtualbox.library.USBConnectionSpeed attribute)

 	future (virtualbox.library.SettingsVersion attribute)

G

 	
 	gateway (virtualbox.library.INATNetwork attribute)

 	generation (virtualbox.library.IReusableEvent attribute)

 	generation_id (virtualbox.library.IFsObjInfo attribute)

 	generic_driver (virtualbox.library.INetworkAdapter attribute)

 	generic_network_drivers (virtualbox.library.IVirtualBox attribute)

 	get_additions_status() (virtualbox.library.IGuest method)

 	get_all_bandwidth_groups() (virtualbox.library.IBandwidthControl method)

 	get_approvals() (virtualbox.library.IVetoEvent method)

 	get_bandwidth_group() (virtualbox.library.IBandwidthControl method)

 	get_boot_order() (virtualbox.library.IMachine method)

 	get_children_count() (virtualbox.library.ISnapshot method)

 	get_cpu_property() (virtualbox.library.IMachine method)

 	get_cpu_status() (virtualbox.library.IMachine method)

 	get_cpuid_leaf() (virtualbox.library.IMachine method)

 	get_default_io_cache_setting_for_storage_controller() (virtualbox.library.ISystemProperties method)

 	get_description() (virtualbox.library.IVirtualSystemDescription method)

 	get_description_by_type() (virtualbox.library.IVirtualSystemDescription method)

 	get_device_activity() (virtualbox.library.IConsole method), [1]

 	get_device_types_for_storage_bus() (virtualbox.library.ISystemProperties method)

 	get_effective_paravirt_provider() (virtualbox.library.IMachine method)

 	get_encryption_settings() (virtualbox.library.IMedium method)

 	get_event() (virtualbox.library.IEventSource method)

 	get_extra_data() (virtualbox.library.IMachine method)

 	(virtualbox.library.IVirtualBox method)

 	get_extra_data_keys() (virtualbox.library.IMachine method)

 	(virtualbox.library.IVirtualBox method)

 	get_facility_status() (virtualbox.library.IGuest method)

 	get_guest_entered_acpi_mode() (virtualbox.library.IConsole method), [1]

 	get_guest_os_type() (virtualbox.library.IVirtualBox method)

 	get_guest_property() (virtualbox.library.IMachine method)

 	get_guest_property_timestamp() (virtualbox.library.IMachine method)

 	get_guest_property_value() (virtualbox.library.IMachine method)

 	get_hw_virt_ex_property() (virtualbox.library.IMachine method)

 	get_mac_options() (virtualbox.library.IDHCPServer method)

 	get_machine_states() (virtualbox.library.IVirtualBox method)

 	get_machines_by_groups() (virtualbox.library.IVirtualBox method)

 	get_max_devices_per_port_for_storage_bus() (virtualbox.library.ISystemProperties method)

 	get_max_instances_of_storage_bus() (virtualbox.library.ISystemProperties method)

 	get_max_instances_of_usb_controller_type() (virtualbox.library.ISystemProperties method)

 	get_max_network_adapters() (virtualbox.library.ISystemProperties method)

 	get_max_network_adapters_of_type() (virtualbox.library.ISystemProperties method)

 	get_max_port_count_for_storage_bus() (virtualbox.library.ISystemProperties method)

 	get_medium() (virtualbox.library.IMachine method)

 	get_medium_attachment() (virtualbox.library.IMachine method)

 	get_medium_attachments_of_controller() (virtualbox.library.IMachine method)

 	get_medium_ids_for_password_id() (virtualbox.library.IAppliance method)

 	get_metrics() (virtualbox.library.IPerformanceCollector method)

 	get_min_port_count_for_storage_bus() (virtualbox.library.ISystemProperties method)

 	get_network_adapter() (virtualbox.library.IMachine method)

 	get_network_settings() (virtualbox.library.INATEngine method)

 	
 	get_parallel_port() (virtualbox.library.IMachine method)

 	get_password_ids() (virtualbox.library.IAppliance method)

 	get_power_button_handled() (virtualbox.library.IConsole method), [1]

 	get_properties() (virtualbox.library.IMedium method)

 	(virtualbox.library.INetworkAdapter method)

 	get_property() (virtualbox.library.IAudioAdapter method)

 	(virtualbox.library.IMedium method)

 	(virtualbox.library.INetworkAdapter method)

 	get_register() (virtualbox.library.IMachineDebugger method)

 	get_registers() (virtualbox.library.IMachineDebugger method)

 	get_screen_resolution() (virtualbox.library.IDisplay method)

 	get_serial_port() (virtualbox.library.IMachine method)

 	get_session() (virtualbox.Manager method)

 	get_snapshot_ids() (virtualbox.library.IMedium method)

 	get_stats() (virtualbox.library.IMachineDebugger method)

 	get_storage_controller_by_instance() (virtualbox.library.IMachine method)

 	get_storage_controller_by_name() (virtualbox.library.IMachine method)

 	get_storage_controller_hotplug_capable() (virtualbox.library.ISystemProperties method)

 	get_usb_controller_by_name() (virtualbox.library.IMachine method)

 	get_usb_controller_count_by_type() (virtualbox.library.IMachine method)

 	get_values_by_type() (virtualbox.library.IVirtualSystemDescription method)

 	get_vetos() (virtualbox.library.IVetoEvent method)

 	get_virtualbox() (virtualbox.Manager method)

 	get_visible_region() (virtualbox.library.IFramebuffer method)

 	get_vm_slot_options() (virtualbox.library.IDHCPServer method)

 	get_vrde_property() (virtualbox.library.IVRDEServer method)

 	get_warnings() (virtualbox.library.IAppliance method)

 	gid (virtualbox.library.IFsObjInfo attribute)

 	global_options (virtualbox.library.IDHCPServer attribute)

 	graphics (virtualbox.library.AdditionsFacilityType attribute)

 	graphics3_d (virtualbox.library.DeviceType attribute)

 	graphics_controller_type (virtualbox.library.IMachine attribute)

 	GraphicsControllerType (class in virtualbox.library)

 	group_added (virtualbox.library.GuestUserState attribute)

 	group_name (virtualbox.library.IFsObjInfo attribute)

 	group_removed (virtualbox.library.GuestUserState attribute)

 	groups (virtualbox.library.IMachine attribute)

 	guest (virtualbox.library.IConsole attribute), [1]

 	guest_address (virtualbox.library.IPCIDeviceAttachment attribute)

 	guest_ip (virtualbox.library.INATRedirectEvent attribute)

 	guest_os_types (virtualbox.library.IVirtualBox attribute)

 	guest_port (virtualbox.library.INATRedirectEvent attribute)

 	guest_screen_layout (virtualbox.library.IDisplay attribute)

 	GuestMonitorChangedEventType (class in virtualbox.library)

 	GuestMonitorStatus (class in virtualbox.library)

 	GuestMouseEventMode (class in virtualbox.library)

 	GuestSessionStatus (class in virtualbox.library)

 	GuestSessionWaitForFlag (class in virtualbox.library)

 	GuestSessionWaitResult (class in virtualbox.library)

 	GuestUserState (class in virtualbox.library)

H

 	
 	handle (virtualbox.library.IGuestProcessIOEvent attribute)

 	handle_event() (virtualbox.library.IEventListener method)

 	hard_disk (virtualbox.library.DeviceType attribute)

 	hard_disks (virtualbox.library.IVirtualBox attribute)

 	hard_links (virtualbox.library.IFsObjInfo attribute)

 	hardware_address (virtualbox.library.IHostNetworkInterface attribute)

 	hardware_uuid (virtualbox.library.IMachine attribute)

 	hardware_version (virtualbox.library.IMachine attribute)

 	height (virtualbox.library.IFramebuffer attribute)

 	(virtualbox.library.IGuestMonitorChangedEvent attribute)

 	(virtualbox.library.IMousePointerShape attribute)

 	(virtualbox.library.IMousePointerShapeChangedEvent attribute)

 	height_reduction (virtualbox.library.IFramebuffer attribute)

 	held (virtualbox.library.USBDeviceState attribute)

 	hidden (virtualbox.library.ProcessCreateFlag attribute)

 	high (virtualbox.library.USBConnectionSpeed attribute)

 	hold (virtualbox.library.USBDeviceFilterAction attribute)

 	home_folder (virtualbox.library.IVirtualBox attribute)

 	host (virtualbox.library.IVirtualBox attribute)

 	host_address (virtualbox.library.IPCIDeviceAttachment attribute)

 	host_battery_low (virtualbox.library.Reason attribute)

 	host_device (virtualbox.library.PortMode attribute)

 	host_drive (virtualbox.library.IMedium attribute)

 	
 	host_ip (virtualbox.library.INATEngine attribute)

 	(virtualbox.library.INATRedirectEvent attribute)

 	host_mode (virtualbox.library.ISerialPort attribute)

 	host_only_interface (virtualbox.library.INetworkAdapter attribute)

 	host_path (virtualbox.library.ISharedFolder attribute)

 	host_pipe (virtualbox.library.PortMode attribute)

 	host_port (virtualbox.library.INATRedirectEvent attribute)

 	host_resume (virtualbox.library.Reason attribute)

 	host_suspend (virtualbox.library.Reason attribute)

 	HostNetworkInterfaceMediumType (class in virtualbox.library)

 	HostNetworkInterfaceStatus (class in virtualbox.library)

 	HostNetworkInterfaceType (class in virtualbox.library)

 	hot_plug_cpu() (virtualbox.library.IMachine method)

 	hot_pluggable (virtualbox.library.IMediumAttachment attribute)

 	hot_unplug_cpu() (virtualbox.library.IMachine method)

 	hot_x (virtualbox.library.IMousePointerShape attribute)

 	hot_y (virtualbox.library.IMousePointerShape attribute)

 	hpet_enabled (virtualbox.library.IMachine attribute)

 	hw_virt_ex_enabled (virtualbox.library.IMachineDebugger attribute)

 	hw_virt_ex_nested_paging_enabled (virtualbox.library.IMachineDebugger attribute)

 	hw_virt_ex_ux_enabled (virtualbox.library.IMachineDebugger attribute)

 	hw_virt_ex_vpid_enabled (virtualbox.library.IMachineDebugger attribute)

 	HWVirtExPropertyType (class in virtualbox.library)

 	hyper_v (virtualbox.library.ParavirtProvider attribute)

I

 	
 	i82078 (virtualbox.library.StorageControllerType attribute)

 	i82540_em (virtualbox.library.NetworkAdapterType attribute)

 	i82543_gc (virtualbox.library.NetworkAdapterType attribute)

 	i82545_em (virtualbox.library.NetworkAdapterType attribute)

 	i_pv6_enabled (virtualbox.library.INATNetwork attribute)

 	i_pv6_prefix (virtualbox.library.INATNetwork attribute)

 	IAdditionsFacility (class in virtualbox.library)

 	IAdditionsStateChangedEvent (class in virtualbox.library)

 	IAppliance (class in virtualbox.library)

 	IAudioAdapter (class in virtualbox.library)

 	IBandwidthControl (class in virtualbox.library)

 	IBandwidthGroup (class in virtualbox.library)

 	IBandwidthGroupChangedEvent (class in virtualbox.library)

 	IBIOSSettings (class in virtualbox.library)

 	ICanShowWindowEvent (class in virtualbox.library)

 	ICertificate (class in virtualbox.library)

 	ich6 (virtualbox.library.StorageControllerType attribute)

 	ich9 (virtualbox.library.ChipsetType attribute)

 	IClipboardModeChangedEvent (class in virtualbox.library)

 	icon (virtualbox.library.IMachine attribute)

 	IConsole (class in virtualbox.library), [1]

 	(class in virtualbox.library_ext)

 	ICPUChangedEvent (class in virtualbox.library)

 	ICPUExecutionCapChangedEvent (class in virtualbox.library)

 	id (virtualbox.library.IAdditionsStateChangedEvent attribute)

 	(virtualbox.library.IBandwidthGroupChangedEvent attribute)

 	(virtualbox.library.ICPUChangedEvent attribute)

 	(virtualbox.library.ICPUExecutionCapChangedEvent attribute)

 	(virtualbox.library.ICanShowWindowEvent attribute)

 	(virtualbox.library.IClipboardModeChangedEvent attribute)

 	(virtualbox.library.IDnDModeChangedEvent attribute)

 	(virtualbox.library.IEventSourceChangedEvent attribute)

 	(virtualbox.library.IExtraDataCanChangeEvent attribute)

 	(virtualbox.library.IExtraDataChangedEvent attribute)

 	(virtualbox.library.IGuestFileOffsetChangedEvent attribute)

 	(virtualbox.library.IGuestFileReadEvent attribute)

 	(virtualbox.library.IGuestFileRegisteredEvent attribute)

 	(virtualbox.library.IGuestFileStateChangedEvent attribute)

 	(virtualbox.library.IGuestFileWriteEvent attribute)

 	(virtualbox.library.IGuestKeyboardEvent attribute)

 	(virtualbox.library.IGuestMonitorChangedEvent attribute)

 	(virtualbox.library.IGuestMouseEvent attribute)

 	(virtualbox.library.IGuestMultiTouchEvent attribute)

 	(virtualbox.library.IGuestProcessInputNotifyEvent attribute)

 	(virtualbox.library.IGuestProcessOutputEvent attribute)

 	(virtualbox.library.IGuestProcessRegisteredEvent attribute)

 	(virtualbox.library.IGuestProcessStateChangedEvent attribute)

 	(virtualbox.library.IGuestPropertyChangedEvent attribute)

 	(virtualbox.library.IGuestSessionRegisteredEvent attribute)

 	(virtualbox.library.IGuestSessionStateChangedEvent attribute)

 	(virtualbox.library.IGuestUserStateChangedEvent attribute)

 	(virtualbox.library.IHostPCIDevicePlugEvent attribute)

 	(virtualbox.library.IKeyboardLedsChangedEvent attribute)

 	(virtualbox.library.IMachineDataChangedEvent attribute)

 	(virtualbox.library.IMachineEvent attribute)

 	(virtualbox.library.IMachineRegisteredEvent attribute)

 	(virtualbox.library.IMachineStateChangedEvent attribute)

 	(virtualbox.library.IMediumChangedEvent attribute)

 	(virtualbox.library.IMediumConfigChangedEvent attribute)

 	(virtualbox.library.IMediumRegisteredEvent attribute)

 	(virtualbox.library.IMouseCapabilityChangedEvent attribute)

 	(virtualbox.library.IMousePointerShapeChangedEvent attribute)

 	(virtualbox.library.INATNetworkStartStopEvent attribute)

 	(virtualbox.library.INATRedirectEvent attribute)

 	(virtualbox.library.INetworkAdapterChangedEvent attribute)

 	(virtualbox.library.IParallelPortChangedEvent attribute)

 	(virtualbox.library.IRuntimeErrorEvent attribute)

 	(virtualbox.library.ISerialPortChangedEvent attribute)

 	(virtualbox.library.ISessionStateChangedEvent attribute)

 	(virtualbox.library.ISharedFolderChangedEvent attribute)

 	(virtualbox.library.IShowWindowEvent attribute)

 	(virtualbox.library.ISnapshotChangedEvent attribute)

 	(virtualbox.library.ISnapshotDeletedEvent attribute)

 	(virtualbox.library.ISnapshotEvent attribute)

 	(virtualbox.library.ISnapshotRestoredEvent attribute)

 	(virtualbox.library.ISnapshotTakenEvent attribute)

 	(virtualbox.library.IStateChangedEvent attribute)

 	(virtualbox.library.IStorageControllerChangedEvent attribute)

 	(virtualbox.library.IStorageDeviceChangedEvent attribute)

 	(virtualbox.library.IUSBControllerChangedEvent attribute)

 	(virtualbox.library.IUSBDeviceStateChangedEvent attribute)

 	(virtualbox.library.IVBoxSVCAvailabilityChangedEvent attribute)

 	(virtualbox.library.IVRDEServerChangedEvent attribute)

 	(virtualbox.library.IVRDEServerInfoChangedEvent attribute)

 	(virtualbox.library.IVideoCaptureChangedEvent attribute)

 	id_p (virtualbox.library.IFile attribute)

 	(virtualbox.library.IGuestSession attribute)

 	(virtualbox.library.IGuestSessionStateChangedEvent attribute)

 	(virtualbox.library.IHostNetworkInterface attribute)

 	(virtualbox.library.IMachine attribute)

 	(virtualbox.library.IMedium attribute)

 	(virtualbox.library.IMediumFormat attribute)

 	(virtualbox.library.IProgress attribute)

 	(virtualbox.library.IRuntimeErrorEvent attribute)

 	(virtualbox.library.ISnapshot attribute)

 	(virtualbox.library.IUSBDevice attribute)

 	IDHCPServer (class in virtualbox.library)

 	IDirectory (class in virtualbox.library)

 	IDisplay (class in virtualbox.library)

 	IDisplaySourceBitmap (class in virtualbox.library)

 	idle (virtualbox.library.GuestUserState attribute)

 	IDnDBase (class in virtualbox.library)

 	IDnDModeChangedEvent (class in virtualbox.library)

 	IDnDSource (class in virtualbox.library)

 	IDnDTarget (class in virtualbox.library)

 	IEmulatedUSB (class in virtualbox.library)

 	IEvent (class in virtualbox.library)

 	IEventListener (class in virtualbox.library)

 	IEventSource (class in virtualbox.library)

 	(class in virtualbox.library_ext)

 	IEventSourceChangedEvent (class in virtualbox.library)

 	IExtPack (class in virtualbox.library)

 	IExtPackBase (class in virtualbox.library)

 	IExtPackFile (class in virtualbox.library)

 	IExtPackManager (class in virtualbox.library)

 	IExtPackPlugIn (class in virtualbox.library)

 	IExtraDataCanChangeEvent (class in virtualbox.library)

 	IExtraDataChangedEvent (class in virtualbox.library)

 	IFile (class in virtualbox.library)

 	IFramebuffer (class in virtualbox.library)

 	IFramebufferOverlay (class in virtualbox.library)

 	IFsObjInfo (class in virtualbox.library)

 	ignore (virtualbox.library.DnDAction attribute)

 	(virtualbox.library.USBDeviceFilterAction attribute)

 	ignore_orphaned_processes (virtualbox.library.ProcessCreateFlag attribute)

 	IGuest (class in virtualbox.library)

 	(class in virtualbox.library_ext)

 	IGuestDirectory (class in virtualbox.library)

 	IGuestDnDSource (class in virtualbox.library)

 	IGuestDnDTarget (class in virtualbox.library)

 	IGuestFile (class in virtualbox.library)

 	IGuestFileEvent (class in virtualbox.library)

 	IGuestFileIOEvent (class in virtualbox.library)

 	IGuestFileOffsetChangedEvent (class in virtualbox.library)

 	IGuestFileReadEvent (class in virtualbox.library)

 	IGuestFileRegisteredEvent (class in virtualbox.library)

 	IGuestFileStateChangedEvent (class in virtualbox.library)

 	IGuestFileWriteEvent (class in virtualbox.library)

 	IGuestFsObjInfo (class in virtualbox.library)

 	IGuestKeyboardEvent (class in virtualbox.library)

 	IGuestMonitorChangedEvent (class in virtualbox.library)

 	IGuestMouseEvent (class in virtualbox.library)

 	IGuestMultiTouchEvent (class in virtualbox.library)

 	IGuestProcess (class in virtualbox.library)

 	IGuestProcessEvent (class in virtualbox.library)

 	IGuestProcessInputNotifyEvent (class in virtualbox.library)

 	IGuestProcessIOEvent (class in virtualbox.library)

 	IGuestProcessOutputEvent (class in virtualbox.library)

 	
 	IGuestProcessRegisteredEvent (class in virtualbox.library)

 	IGuestProcessStateChangedEvent (class in virtualbox.library)

 	IGuestPropertyChangedEvent (class in virtualbox.library)

 	IGuestSession (class in virtualbox.library)

 	(class in virtualbox.library_ext)

 	IGuestSessionEvent (class in virtualbox.library)

 	IGuestSessionRegisteredEvent (class in virtualbox.library)

 	IGuestSessionStateChangedEvent (class in virtualbox.library)

 	IGuestUserStateChangedEvent (class in virtualbox.library)

 	IHostNetworkInterface (class in virtualbox.library)

 	IHostPCIDevicePlugEvent (class in virtualbox.library)

 	IHostUSBDevice (class in virtualbox.library)

 	IHostUSBDeviceFilter (class in virtualbox.library)

 	IHostVideoInputDevice (class in virtualbox.library)

 	IInternalMachineControl (class in virtualbox.library)

 	IInternalSessionControl (class in virtualbox.library)

 	IKeyboard (class in virtualbox.library)

 	(class in virtualbox.library_ext)

 	IKeyboardLedsChangedEvent (class in virtualbox.library)

 	IMachine (class in virtualbox.library)

 	(class in virtualbox.library_ext)

 	IMachineDataChangedEvent (class in virtualbox.library)

 	IMachineDebugger (class in virtualbox.library)

 	IMachineEvent (class in virtualbox.library)

 	IMachineRegisteredEvent (class in virtualbox.library)

 	IMachineStateChangedEvent (class in virtualbox.library)

 	IMedium (class in virtualbox.library)

 	IMediumAttachment (class in virtualbox.library)

 	IMediumChangedEvent (class in virtualbox.library)

 	IMediumConfigChangedEvent (class in virtualbox.library)

 	IMediumFormat (class in virtualbox.library)

 	IMediumRegisteredEvent (class in virtualbox.library)

 	immutable (virtualbox.library.MediumType attribute)

 	IMouse (class in virtualbox.library)

 	(class in virtualbox.library_ext)

 	IMouseCapabilityChangedEvent (class in virtualbox.library)

 	IMousePointerShape (class in virtualbox.library)

 	IMousePointerShapeChangedEvent (class in virtualbox.library)

 	import_machines() (virtualbox.library.IAppliance method)

 	import_to_vdi (virtualbox.library.ImportOptions attribute)

 	import_vboxapi() (in module virtualbox)

 	ImportOptions (class in virtualbox.library)

 	in_contact (virtualbox.library.TouchContactState attribute)

 	in_range (virtualbox.library.TouchContactState attribute)

 	in_use (virtualbox.library.GuestUserState attribute)

 	inaccessible (virtualbox.library.MediumState attribute)

 	inactive (virtualbox.library.AdditionsFacilityStatus attribute)

 	(virtualbox.library.FaultToleranceState attribute)

 	INATEngine (class in virtualbox.library)

 	INATNetwork (class in virtualbox.library)

 	INATNetworkStartStopEvent (class in virtualbox.library)

 	INATRedirectEvent (class in virtualbox.library)

 	INetworkAdapter (class in virtualbox.library)

 	INetworkAdapterChangedEvent (class in virtualbox.library)

 	info() (virtualbox.library.IMachineDebugger method)

 	info_vd_size (virtualbox.library.ISystemProperties attribute)

 	init (virtualbox.library.AdditionsFacilityStatus attribute)

 	initial_size (virtualbox.library.IFile attribute)

 	initiator (virtualbox.library.IProgress attribute)

 	inject_nmi() (virtualbox.library.IMachineDebugger method)

 	input_event (virtualbox.library.VBoxEventType attribute)

 	insert_device_filter() (virtualbox.library.IUSBDeviceFilters method)

 	install() (virtualbox.library.IExtPackFile method)

 	installed_ext_packs (virtualbox.library.IExtPackManager attribute)

 	instance (virtualbox.library.IStorageController attribute)

 	intel_ahci (virtualbox.library.StorageControllerType attribute)

 	Interface (class in virtualbox.library_base)

 	interface_id (virtualbox.library.IVirtualBoxErrorInfo attribute)

 	interface_type (virtualbox.library.IHostNetworkInterface attribute)

 	internal_get_statistics() (virtualbox.library.IGuest method)

 	internal_network (virtualbox.library.INetworkAdapter attribute)

 	internal_networks (virtualbox.library.IVirtualBox attribute)

 	interpret() (virtualbox.library.IAppliance method)

 	invalid (virtualbox.library.ProcessPriority attribute)

 	(virtualbox.library.VBoxEventType attribute)

 	invalidate_and_update() (virtualbox.library.IDisplay method)

 	invalidate_and_update_screen() (virtualbox.library.IDisplay method)

 	io_base (virtualbox.library.IParallelPort attribute)

 	(virtualbox.library.ISerialPort attribute)

 	io_cache_enabled (virtualbox.library.IMachine attribute)

 	io_cache_size (virtualbox.library.IMachine attribute)

 	ioapic_enabled (virtualbox.library.IBIOSSettings attribute)

 	ip_address (virtualbox.library.IDHCPServer attribute)

 	(virtualbox.library.IHostNetworkInterface attribute)

 	IParallelPort (class in virtualbox.library)

 	IParallelPortChangedEvent (class in virtualbox.library)

 	IPCIAddress (class in virtualbox.library)

 	IPCIDeviceAttachment (class in virtualbox.library)

 	IPerformanceCollector (class in virtualbox.library)

 	IPerformanceMetric (class in virtualbox.library)

 	IProcess (class in virtualbox.library)

 	IProgress (class in virtualbox.library)

 	(class in virtualbox.library_ext)

 	ipv6_address (virtualbox.library.IHostNetworkInterface attribute)

 	ipv6_network_mask_prefix_length (virtualbox.library.IHostNetworkInterface attribute)

 	ipv6_supported (virtualbox.library.IHostNetworkInterface attribute)

 	IReusableEvent (class in virtualbox.library)

 	irq (virtualbox.library.IParallelPort attribute)

 	(virtualbox.library.ISerialPort attribute)

 	IRuntimeErrorEvent (class in virtualbox.library)

 	is_approved() (virtualbox.library.IVetoEvent method)

 	is_currently_expired() (virtualbox.library.ICertificate method)

 	is_ejected (virtualbox.library.IMediumAttachment attribute)

 	is_ext_pack_usable() (virtualbox.library.IExtPackManager method)

 	is_format_supported() (virtualbox.library.IDnDBase method)

 	is_physical_device (virtualbox.library.IPCIDeviceAttachment attribute)

 	is_vetoed() (virtualbox.library.IVetoEvent method)

 	ISerialPort (class in virtualbox.library)

 	ISerialPortChangedEvent (class in virtualbox.library)

 	ISession (class in virtualbox.library)

 	(class in virtualbox.library_ext)

 	ISessionStateChangedEvent (class in virtualbox.library)

 	ISharedFolder (class in virtualbox.library)

 	ISharedFolderChangedEvent (class in virtualbox.library)

 	IShowWindowEvent (class in virtualbox.library)

 	ISnapshot (class in virtualbox.library)

 	ISnapshotChangedEvent (class in virtualbox.library)

 	ISnapshotDeletedEvent (class in virtualbox.library)

 	ISnapshotEvent (class in virtualbox.library)

 	ISnapshotRestoredEvent (class in virtualbox.library)

 	ISnapshotTakenEvent (class in virtualbox.library)

 	issuer_name (virtualbox.library.ICertificate attribute)

 	issuer_unique_identifier (virtualbox.library.ICertificate attribute)

 	IStateChangedEvent (class in virtualbox.library)

 	IStorageController (class in virtualbox.library)

 	IStorageControllerChangedEvent (class in virtualbox.library)

 	IStorageDeviceChangedEvent (class in virtualbox.library)

 	ISystemProperties (class in virtualbox.library)

 	IToken (class in virtualbox.library)

 	IUSBController (class in virtualbox.library)

 	IUSBControllerChangedEvent (class in virtualbox.library)

 	IUSBDevice (class in virtualbox.library)

 	IUSBDeviceFilter (class in virtualbox.library)

 	IUSBDeviceFilters (class in virtualbox.library)

 	IUSBDeviceStateChangedEvent (class in virtualbox.library)

 	IUSBProxyBackend (class in virtualbox.library)

 	IVBoxSVCAvailabilityChangedEvent (class in virtualbox.library)

 	IVetoEvent (class in virtualbox.library)

 	IVFSExplorer (class in virtualbox.library)

 	IVideoCaptureChangedEvent (class in virtualbox.library)

 	IVirtualBox (class in virtualbox.library)

 	(class in virtualbox.library_ext)

 	IVirtualBoxClient (class in virtualbox.library)

 	IVirtualBoxErrorInfo (class in virtualbox.library)

 	IVirtualSystemDescription (class in virtualbox.library)

 	IVRDEServer (class in virtualbox.library)

 	IVRDEServerChangedEvent (class in virtualbox.library)

 	IVRDEServerInfo (class in virtualbox.library)

 	IVRDEServerInfoChangedEvent (class in virtualbox.library)

J

 	
 	jpeg (virtualbox.library.BitmapFormat attribute)

K

 	
 	keep_all_ma_cs (virtualbox.library.CloneOptions attribute)

 	(virtualbox.library.ImportOptions attribute)

 	keep_disk_names (virtualbox.library.CloneOptions attribute)

 	keep_natma_cs (virtualbox.library.CloneOptions attribute)

 	(virtualbox.library.ImportOptions attribute)

 	key (virtualbox.library.IExtraDataCanChangeEvent attribute)

 	(virtualbox.library.IExtraDataChangedEvent attribute)

 	
 	key_usage (virtualbox.library.ICertificate attribute)

 	keyboard (virtualbox.library.IConsole attribute), [1]

 	keyboard_hid_type (virtualbox.library.IMachine attribute)

 	keyboard_le_ds (virtualbox.library.IKeyboard attribute)

 	KeyboardHIDType (class in virtualbox.library)

 	KeyboardLED (class in virtualbox.library)

 	kvm (virtualbox.library.ParavirtProvider attribute)

L

 	
 	large_pages (virtualbox.library.HWVirtExPropertyType attribute)

 	last (virtualbox.library.USBControllerType attribute)

 	(virtualbox.library.VBoxEventType attribute)

 	last_access_error (virtualbox.library.IMedium attribute)

 	(virtualbox.library.ISharedFolder attribute)

 	last_online (virtualbox.library.MachineState attribute)

 	last_state_change (virtualbox.library.IMachine attribute)

 	last_transient (virtualbox.library.MachineState attribute)

 	last_updated (virtualbox.library.IAdditionsFacility attribute)

 	last_wildcard (virtualbox.library.VBoxEventType attribute)

 	launch_vm_process() (virtualbox.library.IMachine method)

 	(virtualbox.library_ext.IMachine method)

 	leave() (virtualbox.library.IDnDTarget method)

 	legacy (virtualbox.library.ParavirtProvider attribute)

 	license_p (virtualbox.library.IExtPackBase attribute)

 	line_speed (virtualbox.library.INetworkAdapter attribute)

 	link (virtualbox.library.CloneOptions attribute)

 	(virtualbox.library.DnDAction attribute)

 	listener (virtualbox.library.IEventSourceChangedEvent attribute)

 	live_snapshotting (virtualbox.library.MachineState attribute)

 	load_plug_in() (virtualbox.library.IMachineDebugger method)

 	local_mappings (virtualbox.library.INATNetwork attribute)

 	location (virtualbox.library.IMedium attribute)

 	lock_machine() (virtualbox.library.IMachine method)

 	lock_media() (virtualbox.library.IInternalMachineControl method)

 	lock_read() (virtualbox.library.IMedium method)

 	lock_write() (virtualbox.library.IMedium method)

 	
 	locked (virtualbox.library.GuestUserState attribute)

 	(virtualbox.library.SessionState attribute)

 	locked_read (virtualbox.library.MediumState attribute)

 	locked_write (virtualbox.library.MediumState attribute)

 	LockType (class in virtualbox.library)

 	log_dbg_destinations (virtualbox.library.IMachineDebugger attribute)

 	log_dbg_flags (virtualbox.library.IMachineDebugger attribute)

 	log_dbg_groups (virtualbox.library.IMachineDebugger attribute)

 	log_enabled (virtualbox.library.IMachineDebugger attribute)

 	log_folder (virtualbox.library.IMachine attribute)

 	log_history_count (virtualbox.library.ISystemProperties attribute)

 	log_rel_destinations (virtualbox.library.IMachineDebugger attribute)

 	log_rel_flags (virtualbox.library.IMachineDebugger attribute)

 	log_rel_groups (virtualbox.library.IMachineDebugger attribute)

 	logged_in (virtualbox.library.GuestUserState attribute)

 	logged_out (virtualbox.library.GuestUserState attribute)

 	logging_level (virtualbox.library.ISystemProperties attribute)

 	logical_size (virtualbox.library.IMedium attribute)

 	logo_display_time (virtualbox.library.IBIOSSettings attribute)

 	logo_fade_in (virtualbox.library.IBIOSSettings attribute)

 	logo_fade_out (virtualbox.library.IBIOSSettings attribute)

 	logo_image_path (virtualbox.library.IBIOSSettings attribute)

 	long_mode (virtualbox.library.CPUPropertyType attribute)

 	loopback_ip6 (virtualbox.library.INATNetwork attribute)

 	low (virtualbox.library.USBConnectionSpeed attribute)

 	lower_ip (virtualbox.library.IDHCPServer attribute)

 	lsi_logic (virtualbox.library.StorageControllerType attribute)

 	lsi_logic_sas (virtualbox.library.StorageControllerType attribute)

M

 	
 	mac_address (virtualbox.library.INetworkAdapter attribute)

 	machine (virtualbox.library.IConsole attribute), [1]

 	(virtualbox.library.ISession attribute)

 	(virtualbox.library.ISnapshot attribute)

 	machine_and_child_states (virtualbox.library.CloneMode attribute)

 	machine_event (virtualbox.library.VBoxEventType attribute)

 	machine_groups (virtualbox.library.IVirtualBox attribute)

 	machine_id (virtualbox.library.IExtraDataCanChangeEvent attribute)

 	(virtualbox.library.IExtraDataChangedEvent attribute)

 	(virtualbox.library.IMachineEvent attribute)

 	machine_ids (virtualbox.library.IMedium attribute)

 	machine_state (virtualbox.library.CloneMode attribute)

 	MachinePool (class in virtualbox.pool)

 	machines (virtualbox.library.IAppliance attribute)

 	(virtualbox.library.IVirtualBox attribute)

 	MachineState (class in virtualbox.library)

 	makedirs() (virtualbox.library.IGuestSession method)

 	Manager (class in virtualbox)

 	manager (virtualbox.Manager attribute)

 	manufacturer (virtualbox.library.IUSBDevice attribute)

 	(virtualbox.library.IUSBDeviceFilter attribute)

 	masked_interfaces (virtualbox.library.IUSBDeviceFilter attribute)

 	master (virtualbox.library.FaultToleranceState attribute)

 	max_boot_position (virtualbox.library.ISystemProperties attribute)

 	max_bytes_per_sec (virtualbox.library.IBandwidthGroup attribute)

 	max_devices_per_port_count (virtualbox.library.IStorageController attribute)

 	max_guest_cpu_count (virtualbox.library.ISystemProperties attribute)

 	max_guest_monitors (virtualbox.library.ISystemProperties attribute)

 	max_guest_ram (virtualbox.library.ISystemProperties attribute)

 	max_guest_vram (virtualbox.library.ISystemProperties attribute)

 	max_port_count (virtualbox.library.IStorageController attribute)

 	maximum_value (virtualbox.library.IPerformanceMetric attribute)

 	medium (virtualbox.library.IMediumAttachment attribute)

 	(virtualbox.library.IMediumConfigChangedEvent attribute)

 	medium_attachment (virtualbox.library.IMediumChangedEvent attribute)

 	medium_attachments (virtualbox.library.IMachine attribute)

 	medium_format (virtualbox.library.IMedium attribute)

 	medium_formats (virtualbox.library.ISystemProperties attribute)

 	medium_id (virtualbox.library.IMediumRegisteredEvent attribute)

 	medium_type (virtualbox.library.IHostNetworkInterface attribute)

 	(virtualbox.library.IMediumRegisteredEvent attribute)

 	MediumFormatCapabilities (class in virtualbox.library)

 	MediumState (class in virtualbox.library)

 	MediumType (class in virtualbox.library)

 	MediumVariant (class in virtualbox.library)

 	memory_balloon_size (virtualbox.library.IGuest attribute)

 	(virtualbox.library.IMachine attribute)

 	
 	memory_size (virtualbox.library.IMachine attribute)

 	merge_to() (virtualbox.library.IMedium method)

 	message (virtualbox.library.IHostPCIDevicePlugEvent attribute)

 	(virtualbox.library.IRuntimeErrorEvent attribute)

 	metric_name (virtualbox.library.IPerformanceMetric attribute)

 	metric_names (virtualbox.library.IPerformanceCollector attribute)

 	midl_does_not_like_empty_interfaces (virtualbox.library.IAdditionsStateChangedEvent attribute)

 	(virtualbox.library.ICanShowWindowEvent attribute)

 	(virtualbox.library.IGuestDirectory attribute)

 	(virtualbox.library.IGuestDnDSource attribute)

 	(virtualbox.library.IGuestDnDTarget attribute)

 	(virtualbox.library.IGuestFile attribute)

 	(virtualbox.library.IGuestFileOffsetChangedEvent attribute)

 	(virtualbox.library.IGuestFileWriteEvent attribute)

 	(virtualbox.library.IGuestFsObjInfo attribute)

 	(virtualbox.library.ISnapshotChangedEvent attribute)

 	(virtualbox.library.ISnapshotDeletedEvent attribute)

 	(virtualbox.library.ISnapshotRestoredEvent attribute)

 	(virtualbox.library.ISnapshotTakenEvent attribute)

 	(virtualbox.library.IStorageControllerChangedEvent attribute)

 	(virtualbox.library.IUSBControllerChangedEvent attribute)

 	(virtualbox.library.IVRDEServerChangedEvent attribute)

 	(virtualbox.library.IVRDEServerInfoChangedEvent attribute)

 	(virtualbox.library.IVideoCaptureChangedEvent attribute)

 	min_guest_cpu_count (virtualbox.library.ISystemProperties attribute)

 	min_guest_ram (virtualbox.library.ISystemProperties attribute)

 	min_guest_vram (virtualbox.library.ISystemProperties attribute)

 	min_port_count (virtualbox.library.IStorageController attribute)

 	minimal (virtualbox.library.ParavirtProvider attribute)

 	minimum_value (virtualbox.library.IPerformanceMetric attribute)

 	mmpm (virtualbox.library.AudioDriverType attribute)

 	mode (virtualbox.library.IGuestMouseEvent attribute)

 	modification_time (virtualbox.library.IFsObjInfo attribute)

 	modify_log_destinations() (virtualbox.library.IMachineDebugger method)

 	modify_log_flags() (virtualbox.library.IMachineDebugger method)

 	modify_log_groups() (virtualbox.library.IMachineDebugger method)

 	module_path (virtualbox.library.IExtPackPlugIn attribute)

 	monitor_count (virtualbox.library.IMachine attribute)

 	mount_medium() (virtualbox.library.IMachine method)

 	mouse (virtualbox.library.IConsole attribute), [1]

 	MouseButtonState (class in virtualbox.library)

 	move (virtualbox.library.DnDAction attribute)

 	move() (virtualbox.library.IDnDTarget method)

 	(virtualbox.library.IFramebufferOverlay method)

 	multi_attach (virtualbox.library.MediumType attribute)

 	multi_touch_supported (virtualbox.library.IMouse attribute)

N

 	
 	name (virtualbox.library.IAdditionsFacility attribute)

 	(virtualbox.library.IBandwidthGroup attribute)

 	(virtualbox.library.IExtPackBase attribute)

 	(virtualbox.library.IExtPackPlugIn attribute)

 	(virtualbox.library.IFsObjInfo attribute)

 	(virtualbox.library.IGuestProcess attribute)

 	(virtualbox.library.IGuestPropertyChangedEvent attribute)

 	(virtualbox.library.IGuestSession attribute)

 	(virtualbox.library.IGuestUserStateChangedEvent attribute)

 	(virtualbox.library.IHostNetworkInterface attribute)

 	(virtualbox.library.IHostVideoInputDevice attribute)

 	(virtualbox.library.IMachine attribute)

 	(virtualbox.library.IMedium attribute)

 	(virtualbox.library.IMediumFormat attribute)

 	(virtualbox.library.INATRedirectEvent attribute)

 	(virtualbox.library.IPCIDeviceAttachment attribute)

 	(virtualbox.library.IProcess attribute)

 	(virtualbox.library.ISession attribute)

 	(virtualbox.library.ISharedFolder attribute)

 	(virtualbox.library.ISnapshot attribute)

 	(virtualbox.library.IStorageController attribute)

 	(virtualbox.library.IUSBController attribute)

 	(virtualbox.library.IUSBDeviceFilter attribute)

 	(virtualbox.library.IUSBProxyBackend attribute)

 	nat_engine (virtualbox.library.INetworkAdapter attribute)

 	nat_network (virtualbox.library.INetworkAdapter attribute)

 	nat_networks (virtualbox.library.IVirtualBox attribute)

 	NATAliasMode (class in virtualbox.library)

 	NATProtocol (class in virtualbox.library)

 	need_dhcp_server (virtualbox.library.INATNetwork attribute)

 	needs_host_cursor (virtualbox.library.IMouse attribute)

 	(virtualbox.library.IMouseCapabilityChangedEvent attribute)

 	nested_paging (virtualbox.library.HWVirtExPropertyType attribute)

 	network (virtualbox.library.BandwidthGroupType attribute)

 	(virtualbox.library.DeviceType attribute)

 	(virtualbox.library.INATEngine attribute)

 	(virtualbox.library.INATNetwork attribute)

 	network_adapter (virtualbox.library.INetworkAdapterChangedEvent attribute)

 	network_mask (virtualbox.library.IDHCPServer attribute)

 	(virtualbox.library.IHostNetworkInterface attribute)

 	network_name (virtualbox.library.IDHCPServer attribute)

 	(virtualbox.library.IHostNetworkInterface attribute)

 	(virtualbox.library.INATNetwork attribute)

 	NetworkAdapterPromiscModePolicy (class in virtualbox.library)

 	NetworkAdapterType (class in virtualbox.library)

 	NetworkAttachmentType (class in virtualbox.library)

 	new_origin (virtualbox.library.GuestMonitorChangedEventType attribute)

 	next_p (virtualbox.library.IVirtualBoxErrorInfo attribute)

 	no_create_dir (virtualbox.library.MediumVariant attribute)

 	no_replace (virtualbox.library.FileCopyFlag attribute)

 	(virtualbox.library.FsObjRenameFlag attribute)

 	no_symlinks (virtualbox.library.DirectoryOpenFlag attribute)

 	(virtualbox.library.SymlinkReadFlag attribute)

 	node_id (virtualbox.library.IFsObjInfo attribute)

 	node_id_device (virtualbox.library.IFsObjInfo attribute)

 	nominal_state (virtualbox.library.IInternalSessionControl attribute)

 	non_rotational (virtualbox.library.IMediumAttachment attribute)

 	non_rotational_device() (virtualbox.library.IMachine method)

 	
 	non_volatile_storage_file (virtualbox.library.IBIOSSettings attribute)

 	none (virtualbox.library.AdditionsFacilityClass attribute)

 	(virtualbox.library.AdditionsFacilityType attribute)

 	(virtualbox.library.AdditionsRunLevelType attribute)

 	(virtualbox.library.AdditionsUpdateFlag attribute)

 	(virtualbox.library.DirectoryCopyFlags attribute)

 	(virtualbox.library.DirectoryCreateFlag attribute)

 	(virtualbox.library.DirectoryOpenFlag attribute)

 	(virtualbox.library.DirectoryRemoveRecFlag attribute)

 	(virtualbox.library.FileCopyFlag attribute)

 	(virtualbox.library.FileOpenExFlags attribute)

 	(virtualbox.library.FsObjMoveFlags attribute)

 	(virtualbox.library.GuestSessionWaitForFlag attribute)

 	(virtualbox.library.GuestSessionWaitResult attribute)

 	(virtualbox.library.KeyboardHIDType attribute)

 	(virtualbox.library.ParavirtProvider attribute)

 	(virtualbox.library.PointingHIDType attribute)

 	(virtualbox.library.ProcessCreateFlag attribute)

 	(virtualbox.library.ProcessInputFlag attribute)

 	(virtualbox.library.ProcessOutputFlag attribute)

 	(virtualbox.library.ProcessWaitForFlag attribute)

 	(virtualbox.library.ProcessWaitResult attribute)

 	(virtualbox.library.SymlinkReadFlag attribute)

 	(virtualbox.library.TouchContactState attribute)

 	normal (virtualbox.library.MediumType attribute)

 	not_created (virtualbox.library.MediumState attribute)

 	not_supported (virtualbox.library.USBDeviceState attribute)

 	notify3_d_event() (virtualbox.library.IFramebuffer method)

 	notify_change() (virtualbox.library.IFramebuffer method)

 	notify_hi_dpi_output_policy_change() (virtualbox.library.IDisplay method)

 	notify_scale_factor_change() (virtualbox.library.IDisplay method)

 	notify_update() (virtualbox.library.IFramebuffer method)

 	notify_update_image() (virtualbox.library.IFramebuffer method)

 	null (virtualbox.library.AudioCodecType attribute)

 	(virtualbox.library.AudioDriverType attribute)

 	(virtualbox.library.AuthType attribute)

 	(virtualbox.library.BandwidthGroupType attribute)

 	(virtualbox.library.CPUPropertyType attribute)

 	(virtualbox.library.ChipsetType attribute)

 	(virtualbox.library.DeviceType attribute)

 	(virtualbox.library.GraphicsControllerType attribute)

 	(virtualbox.library.HWVirtExPropertyType attribute)

 	(virtualbox.library.LockType attribute)

 	(virtualbox.library.MachineState attribute)

 	(virtualbox.library.NetworkAdapterType attribute)

 	(virtualbox.library.NetworkAttachmentType attribute)

 	(virtualbox.library.SessionState attribute)

 	(virtualbox.library.SessionType attribute)

 	(virtualbox.library.SettingsVersion attribute)

 	(virtualbox.library.StorageBus attribute)

 	(virtualbox.library.StorageControllerType attribute)

 	(virtualbox.library.USBConnectionSpeed attribute)

 	(virtualbox.library.USBControllerType attribute)

 	(virtualbox.library.USBDeviceFilterAction attribute)

 	num_groups (virtualbox.library.IBandwidthControl attribute)

 	num_lock (virtualbox.library.IKeyboardLedsChangedEvent attribute)

 	number_of_clients (virtualbox.library.IVRDEServerInfo attribute)

 	nv_me (virtualbox.library.StorageControllerType attribute)

O

 	
 	object_p (virtualbox.library.IPerformanceMetric attribute)

 	object_size (virtualbox.library.IFsObjInfo attribute)

 	offset (virtualbox.library.IFile attribute)

 	(virtualbox.library.IGuestFileIOEvent attribute)

 	OleErrorAccessdenied

 	OleErrorFail

 	OleErrorInvalidarg

 	OleErrorNointerface

 	OleErrorNotimpl

 	OleErrorUnexpected

 	on_additions_state_changed (virtualbox.library.VBoxEventType attribute)

 	on_bandwidth_group_change() (virtualbox.library.IInternalSessionControl method)

 	on_bandwidth_group_changed (virtualbox.library.VBoxEventType attribute)

 	on_can_show_window (virtualbox.library.VBoxEventType attribute)

 	on_clipboard_mode_change() (virtualbox.library.IInternalSessionControl method)

 	on_clipboard_mode_changed (virtualbox.library.VBoxEventType attribute)

 	on_cpu_change() (virtualbox.library.IInternalSessionControl method)

 	on_cpu_changed (virtualbox.library.VBoxEventType attribute)

 	on_cpu_execution_cap_change() (virtualbox.library.IInternalSessionControl method)

 	on_cpu_execution_cap_changed (virtualbox.library.VBoxEventType attribute)

 	on_dn_d_mode_change() (virtualbox.library.IInternalSessionControl method)

 	on_dn_d_mode_changed (virtualbox.library.VBoxEventType attribute)

 	on_event_source_changed (virtualbox.library.VBoxEventType attribute)

 	on_extra_data_can_change (virtualbox.library.VBoxEventType attribute)

 	on_extra_data_changed (virtualbox.library.VBoxEventType attribute)

 	on_guest_file_offset_changed (virtualbox.library.VBoxEventType attribute)

 	on_guest_file_read (virtualbox.library.VBoxEventType attribute)

 	on_guest_file_registered (virtualbox.library.VBoxEventType attribute)

 	on_guest_file_state_changed (virtualbox.library.VBoxEventType attribute)

 	on_guest_file_write (virtualbox.library.VBoxEventType attribute)

 	on_guest_keyboard (virtualbox.library.VBoxEventType attribute)

 	on_guest_monitor_changed (virtualbox.library.VBoxEventType attribute)

 	on_guest_mouse (virtualbox.library.VBoxEventType attribute)

 	on_guest_multi_touch (virtualbox.library.VBoxEventType attribute)

 	on_guest_process_input_notify (virtualbox.library.VBoxEventType attribute)

 	on_guest_process_output (virtualbox.library.VBoxEventType attribute)

 	on_guest_process_registered (virtualbox.library.VBoxEventType attribute)

 	on_guest_process_state_changed (virtualbox.library.VBoxEventType attribute)

 	on_guest_property_changed (virtualbox.library.VBoxEventType attribute)

 	on_guest_session_registered (virtualbox.library.VBoxEventType attribute)

 	on_guest_session_state_changed (virtualbox.library.VBoxEventType attribute)

 	on_guest_user_state_changed (virtualbox.library.VBoxEventType attribute)

 	on_host_name_resolution_configuration_change (virtualbox.library.VBoxEventType attribute)

 	on_host_pci_device_plug (virtualbox.library.VBoxEventType attribute)

 	on_keyboard_leds_changed (virtualbox.library.VBoxEventType attribute)

 	on_machine_data_changed (virtualbox.library.VBoxEventType attribute)

 	on_machine_registered (virtualbox.library.VBoxEventType attribute)

 	on_machine_state_changed (virtualbox.library.VBoxEventType attribute)

 	on_medium_change() (virtualbox.library.IInternalSessionControl method)

 	on_medium_changed (virtualbox.library.VBoxEventType attribute)

 	on_medium_config_changed (virtualbox.library.VBoxEventType attribute)

 	on_medium_registered (virtualbox.library.VBoxEventType attribute)

 	on_mouse_capability_changed (virtualbox.library.VBoxEventType attribute)

 	on_mouse_pointer_shape_changed (virtualbox.library.VBoxEventType attribute)

 	on_nat_network_alter (virtualbox.library.VBoxEventType attribute)

 	on_nat_network_changed (virtualbox.library.VBoxEventType attribute)

 	on_nat_network_creation_deletion (virtualbox.library.VBoxEventType attribute)

 	on_nat_network_port_forward (virtualbox.library.VBoxEventType attribute)

 	on_nat_network_setting (virtualbox.library.VBoxEventType attribute)

 	on_nat_network_start_stop (virtualbox.library.VBoxEventType attribute)

 	
 	on_nat_redirect (virtualbox.library.VBoxEventType attribute)

 	on_network_adapter_change() (virtualbox.library.IInternalSessionControl method)

 	on_network_adapter_changed (virtualbox.library.VBoxEventType attribute)

 	on_parallel_port_change() (virtualbox.library.IInternalSessionControl method)

 	on_parallel_port_changed (virtualbox.library.VBoxEventType attribute)

 	on_runtime_error (virtualbox.library.VBoxEventType attribute)

 	on_serial_port_change() (virtualbox.library.IInternalSessionControl method)

 	on_serial_port_changed (virtualbox.library.VBoxEventType attribute)

 	on_session_end() (virtualbox.library.IInternalMachineControl method)

 	on_session_state_changed (virtualbox.library.VBoxEventType attribute)

 	on_shared_folder_change() (virtualbox.library.IInternalSessionControl method)

 	on_shared_folder_changed (virtualbox.library.VBoxEventType attribute)

 	on_show_window (virtualbox.library.VBoxEventType attribute)

 	on_show_window() (virtualbox.library.IInternalSessionControl method)

 	on_snapshot_changed (virtualbox.library.VBoxEventType attribute)

 	on_snapshot_deleted (virtualbox.library.VBoxEventType attribute)

 	on_snapshot_restored (virtualbox.library.VBoxEventType attribute)

 	on_snapshot_taken (virtualbox.library.VBoxEventType attribute)

 	on_state_changed (virtualbox.library.VBoxEventType attribute)

 	on_storage_controller_change() (virtualbox.library.IInternalSessionControl method)

 	on_storage_controller_changed (virtualbox.library.VBoxEventType attribute)

 	on_storage_device_change() (virtualbox.library.IInternalSessionControl method)

 	on_storage_device_changed (virtualbox.library.VBoxEventType attribute)

 	on_usb_controller_change() (virtualbox.library.IInternalSessionControl method)

 	on_usb_controller_changed (virtualbox.library.VBoxEventType attribute)

 	on_usb_device_attach() (virtualbox.library.IInternalSessionControl method)

 	on_usb_device_detach() (virtualbox.library.IInternalSessionControl method)

 	on_usb_device_state_changed (virtualbox.library.VBoxEventType attribute)

 	on_v_box_svc_availability_changed (virtualbox.library.VBoxEventType attribute)

 	on_video_capture_change() (virtualbox.library.IInternalSessionControl method)

 	on_video_capture_changed (virtualbox.library.VBoxEventType attribute)

 	on_vrde_server_change() (virtualbox.library.IInternalSessionControl method)

 	on_vrde_server_changed (virtualbox.library.VBoxEventType attribute)

 	on_vrde_server_info_changed (virtualbox.library.VBoxEventType attribute)

 	online (virtualbox.library.ISnapshot attribute)

 	online_merge_medium() (virtualbox.library.IInternalSessionControl method)

 	online_snapshotting (virtualbox.library.MachineState attribute)

 	opaque (virtualbox.library.BitmapFormat attribute)

 	open_action (virtualbox.library.IFile attribute)

 	open_existing (virtualbox.library.FileOpenAction attribute)

 	open_existing_truncated (virtualbox.library.FileOpenAction attribute)

 	open_ext_pack_file() (virtualbox.library.IExtPackManager method)

 	open_machine() (virtualbox.library.IVirtualBox method)

 	open_medium() (virtualbox.library.IVirtualBox method)

 	open_or_create (virtualbox.library.FileOpenAction attribute)

 	open_p (virtualbox.library.FileStatus attribute)

 	opening (virtualbox.library.FileStatus attribute)

 	operation (virtualbox.library.IProgress attribute)

 	operation_count (virtualbox.library.IProgress attribute)

 	operation_description (virtualbox.library.IProgress attribute)

 	operation_percent (virtualbox.library.IProgress attribute)

 	operation_weight (virtualbox.library.IProgress attribute)

 	origin_x (virtualbox.library.IGuestMonitorChangedEvent attribute)

 	origin_y (virtualbox.library.IGuestMonitorChangedEvent attribute)

 	os_name (virtualbox.library.IMachineDebugger attribute)

 	os_type_id (virtualbox.library.IGuest attribute)

 	(virtualbox.library.IMachine attribute)

 	os_version (virtualbox.library.IMachineDebugger attribute)

 	oss (virtualbox.library.AudioDriverType attribute)

 	overflow (virtualbox.library.ProcessInputStatus attribute)

 	overlay (virtualbox.library.IFramebuffer attribute)

P

 	
 	package_type (virtualbox.library.IVirtualBox attribute)

 	pae (virtualbox.library.CPUPropertyType attribute)

 	pae_enabled (virtualbox.library.IMachineDebugger attribute)

 	page_fusion_enabled (virtualbox.library.IMachine attribute)

 	parallel_port (virtualbox.library.IParallelPortChangedEvent attribute)

 	parallel_port_count (virtualbox.library.ISystemProperties attribute)

 	paravirt_debug (virtualbox.library.IMachine attribute)

 	paravirt_provider (virtualbox.library.IMachine attribute)

 	ParavirtProvider (class in virtualbox.library)

 	parent (virtualbox.library.IMachine attribute)

 	(virtualbox.library.IMedium attribute)

 	(virtualbox.library.ISnapshot attribute)

 	parents (virtualbox.library.DirectoryCreateFlag attribute)

 	passthrough (virtualbox.library.IMediumAttachment attribute)

 	passthrough_device() (virtualbox.library.IMachine method)

 	path (virtualbox.library.IAppliance attribute)

 	(virtualbox.library.IHostVideoInputDevice attribute)

 	(virtualbox.library.IParallelPort attribute)

 	(virtualbox.library.ISerialPort attribute)

 	(virtualbox.library.IVFSExplorer attribute)

 	path_exists() (virtualbox.library.IGuestSession method)

 	path_style (virtualbox.library.IGuestSession attribute)

 	PathStyle (class in virtualbox.library)

 	patm_enabled (virtualbox.library.IMachineDebugger attribute)

 	pause() (virtualbox.library.IConsole method), [1]

 	pause_with_reason() (virtualbox.library.IInternalSessionControl method)

 	paused (virtualbox.library.AdditionsFacilityStatus attribute)

 	(virtualbox.library.MachineState attribute)

 	(virtualbox.library.ProcessStatus attribute)

 	pci_device_assignments (virtualbox.library.IMachine attribute)

 	percent (virtualbox.library.IProgress attribute)

 	performance_collector (virtualbox.library.IVirtualBox attribute)

 	period (virtualbox.library.IPerformanceMetric attribute)

 	pid (virtualbox.library.IGuestProcess attribute)

 	(virtualbox.library.IGuestProcessEvent attribute)

 	(virtualbox.library.IInternalSessionControl attribute)

 	(virtualbox.library.IProcess attribute)

 	piix3 (virtualbox.library.ChipsetType attribute)

 	(virtualbox.library.StorageControllerType attribute)

 	piix4 (virtualbox.library.StorageControllerType attribute)

 	pixel_format (virtualbox.library.IFramebuffer attribute)

 	plug_ins (virtualbox.library.IExtPackBase attribute)

 	plugged (virtualbox.library.IHostPCIDevicePlugEvent attribute)

 	png (virtualbox.library.BitmapFormat attribute)

 	pointer_shape (virtualbox.library.IMouse attribute)

 	pointing_hid_type (virtualbox.library.IMachine attribute)

 	PointingHIDType (class in virtualbox.library)

 	port (virtualbox.library.IMediumAttachment attribute)

 	(virtualbox.library.IUSBDevice attribute)

 	(virtualbox.library.IUSBDeviceFilter attribute)

 	(virtualbox.library.IVRDEServerInfo attribute)

 	port_count (virtualbox.library.IStorageController attribute)

 	port_forward_rules4 (virtualbox.library.INATNetwork attribute)

 	port_forward_rules6 (virtualbox.library.INATNetwork attribute)

 	port_version (virtualbox.library.IUSBDevice attribute)

 	PortMode (class in virtualbox.library)

 	
 	power_button() (virtualbox.library.IConsole method), [1]

 	power_down() (virtualbox.library.IConsole method), [1]

 	power_off (virtualbox.library.AutostopType attribute)

 	power_up() (virtualbox.library.IConsole method), [1]

 	power_up_paused() (virtualbox.library.IConsole method), [1]

 	powered_off (virtualbox.library.MachineState attribute)

 	ppp (virtualbox.library.HostNetworkInterfaceMediumType attribute)

 	pre_init (virtualbox.library.AdditionsFacilityStatus attribute)

 	preferred (virtualbox.library.MediumFormatCapabilities attribute)

 	process (virtualbox.library.IGuestProcessEvent attribute)

 	process_create() (virtualbox.library.IGuestSession method)

 	process_create_ex() (virtualbox.library.IGuestSession method)

 	process_get() (virtualbox.library.IGuestSession method)

 	process_vhwa_command() (virtualbox.library.IFramebuffer method)

 	ProcessCreateFlag (class in virtualbox.library)

 	processed (virtualbox.library.IGuestFileIOEvent attribute)

 	(virtualbox.library.IGuestProcessIOEvent attribute)

 	processes (virtualbox.library.IGuestSession attribute)

 	ProcessInputFlag (class in virtualbox.library)

 	ProcessInputStatus (class in virtualbox.library)

 	ProcessorFeature (class in virtualbox.library)

 	ProcessOutputFlag (class in virtualbox.library)

 	ProcessPriority (class in virtualbox.library)

 	ProcessStatus (class in virtualbox.library)

 	ProcessWaitForFlag (class in virtualbox.library)

 	ProcessWaitResult (class in virtualbox.library)

 	product (virtualbox.library.IUSBDevice attribute)

 	(virtualbox.library.IUSBDeviceFilter attribute)

 	product_id (virtualbox.library.IUSBDevice attribute)

 	(virtualbox.library.IUSBDeviceFilter attribute)

 	profile (virtualbox.library.ProcessCreateFlag attribute)

 	program (virtualbox.library.AdditionsFacilityClass attribute)

 	progress_operations (virtualbox.library.IVirtualBox attribute)

 	promisc_mode_policy (virtualbox.library.INetworkAdapter attribute)

 	properties (virtualbox.library.MediumFormatCapabilities attribute)

 	properties_list (virtualbox.library.IAudioAdapter attribute)

 	proto (virtualbox.library.INATRedirectEvent attribute)

 	protocol_version (virtualbox.library.IDnDBase attribute)

 	(virtualbox.library.IGuestSession attribute)

 	ps2_keyboard (virtualbox.library.KeyboardHIDType attribute)

 	ps2_mouse (virtualbox.library.PointingHIDType attribute)

 	public_key_algorithm (virtualbox.library.ICertificate attribute)

 	public_key_algorithm_oid (virtualbox.library.ICertificate attribute)

 	pull_guest_properties() (virtualbox.library.IInternalMachineControl method)

 	pulse (virtualbox.library.AudioDriverType attribute)

 	push_guest_property() (virtualbox.library.IInternalMachineControl method)

 	put_cad() (virtualbox.library.IKeyboard method)

 	put_event_multi_touch() (virtualbox.library.IMouse method)

 	put_event_multi_touch_string() (virtualbox.library.IMouse method)

 	put_keys() (virtualbox.library.IKeyboard method)

 	(virtualbox.library_ext.IKeyboard method)

 	put_mouse_event() (virtualbox.library.IMouse method)

 	put_mouse_event_absolute() (virtualbox.library.IMouse method)

 	put_scancode() (virtualbox.library.IKeyboard method)

 	put_scancodes() (virtualbox.library.IKeyboard method)

 	pxe_debug_enabled (virtualbox.library.IBIOSSettings attribute)

Q

 	
 	query_all_plug_ins_for_frontend() (virtualbox.library.IExtPackManager method)

 	query_bitmap_info() (virtualbox.library.IDisplaySourceBitmap method)

 	query_framebuffer() (virtualbox.library.IDisplay method)

 	query_info() (virtualbox.library.ICertificate method)

 	(virtualbox.library.IFile method)

 	query_license() (virtualbox.library.IExtPackBase method)

 	query_log_filename() (virtualbox.library.IMachine method)

 	
 	query_metrics_data() (virtualbox.library.IPerformanceCollector method)

 	query_object() (virtualbox.library.IExtPack method)

 	query_os_kernel_log() (virtualbox.library.IMachineDebugger method)

 	query_saved_guest_screen_info() (virtualbox.library.IMachine method)

 	query_saved_screenshot_info() (virtualbox.library.IMachine method)

 	query_size() (virtualbox.library.IFile method)

 	query_source_bitmap() (virtualbox.library.IDisplay method)

R

 	
 	raw_cert_data (virtualbox.library.ICertificate attribute)

 	raw_file (virtualbox.library.PortMode attribute)

 	raw_mode_supported (virtualbox.library.ISystemProperties attribute)

 	read (virtualbox.library.FileSharingMode attribute)

 	read() (virtualbox.library.IAppliance method)

 	(virtualbox.library.IDirectory method)

 	(virtualbox.library.IFile method)

 	(virtualbox.library.IGuestProcess method)

 	(virtualbox.library.IProcess method)

 	read_at() (virtualbox.library.IFile method)

 	read_delete (virtualbox.library.FileSharingMode attribute)

 	read_log() (virtualbox.library.IMachine method)

 	read_only (virtualbox.library.FileAccessMode attribute)

 	(virtualbox.library.IMedium attribute)

 	read_physical_memory() (virtualbox.library.IMachineDebugger method)

 	read_saved_screenshot_to_array() (virtualbox.library.IMachine method)

 	read_saved_thumbnail_to_array() (virtualbox.library.IMachine method)

 	read_virtual_memory() (virtualbox.library.IMachineDebugger method)

 	read_write (virtualbox.library.FileAccessMode attribute)

 	(virtualbox.library.FileSharingMode attribute)

 	readonly (virtualbox.library.MediumType attribute)

 	Reason (class in virtualbox.library)

 	receive_data() (virtualbox.library.IDnDSource method)

 	recompile_supervisor (virtualbox.library.IMachineDebugger attribute)

 	recompile_user (virtualbox.library.IMachineDebugger attribute)

 	reconfigure_medium_attachments() (virtualbox.library.IInternalSessionControl method)

 	redirects (virtualbox.library.INATEngine attribute)

 	reference (virtualbox.library.IBandwidthGroup attribute)

 	refresh_state() (virtualbox.library.IMedium method)

 	register_callback() (in module virtualbox.events)

 	(virtualbox.library.IEventSource method)

 	(virtualbox.library_ext.IEventSource method)

 	register_key_callback() (virtualbox.library.IKeyboard method)

 	register_listener() (virtualbox.library.IEventSource method)

 	register_machine() (virtualbox.library.IVirtualBox method)

 	register_on_additions_state_changed() (virtualbox.library.IConsole method), [1]

 	(virtualbox.library_ext.IConsole method)

 	register_on_can_show_window() (virtualbox.library.IConsole method), [1]

 	(virtualbox.library_ext.IConsole method)

 	register_on_clipboard_mode_changed() (virtualbox.library.IConsole method), [1]

 	(virtualbox.library_ext.IConsole method)

 	register_on_drag_and_drop_mode_changed() (virtualbox.library.IConsole method), [1]

 	(virtualbox.library_ext.IConsole method)

 	register_on_event_source_changed() (virtualbox.library.IConsole method), [1]

 	(virtualbox.library.IVirtualBox method)

 	(virtualbox.library_ext.IConsole method)

 	(virtualbox.library_ext.IVirtualBox method)

 	register_on_extra_data_can_change() (virtualbox.library.IVirtualBox method)

 	(virtualbox.library_ext.IVirtualBox method)

 	register_on_extra_data_changed() (virtualbox.library.IVirtualBox method)

 	(virtualbox.library_ext.IVirtualBox method)

 	register_on_guest_keyboard() (virtualbox.library.IKeyboard method)

 	(virtualbox.library_ext.IKeyboard method)

 	register_on_guest_mouse() (virtualbox.library.IMouse method)

 	(virtualbox.library_ext.IMouse method)

 	register_on_guest_property_changed() (virtualbox.library.IVirtualBox method)

 	(virtualbox.library_ext.IVirtualBox method)

 	register_on_machine_data_changed() (virtualbox.library.IVirtualBox method)

 	(virtualbox.library_ext.IVirtualBox method)

 	register_on_machine_registered() (virtualbox.library.IVirtualBox method)

 	(virtualbox.library_ext.IVirtualBox method)

 	register_on_machine_state_changed() (virtualbox.library.IVirtualBox method)

 	(virtualbox.library_ext.IVirtualBox method)

 	register_on_medium_changed() (virtualbox.library.IConsole method), [1]

 	(virtualbox.library_ext.IConsole method)

 	register_on_network_adapter_changed() (virtualbox.library.IConsole method), [1]

 	(virtualbox.library_ext.IConsole method)

 	register_on_parallel_port_changed() (virtualbox.library.IConsole method), [1]

 	(virtualbox.library_ext.IConsole method)

 	register_on_serial_port_changed() (virtualbox.library.IConsole method), [1]

 	(virtualbox.library_ext.IConsole method)

 	register_on_session_state_changed() (virtualbox.library.IVirtualBox method)

 	(virtualbox.library_ext.IVirtualBox method)

 	register_on_shared_folder_changed() (virtualbox.library.IConsole method), [1]

 	(virtualbox.library_ext.IConsole method)

 	
 	register_on_show_window() (virtualbox.library.IConsole method), [1]

 	(virtualbox.library_ext.IConsole method)

 	register_on_snapshot_changed() (virtualbox.library.IVirtualBox method)

 	(virtualbox.library_ext.IVirtualBox method)

 	register_on_snapshot_deleted() (virtualbox.library.IVirtualBox method)

 	(virtualbox.library_ext.IVirtualBox method)

 	register_on_snapshot_taken() (virtualbox.library.IVirtualBox method)

 	(virtualbox.library_ext.IVirtualBox method)

 	register_on_state_changed() (virtualbox.library.IConsole method), [1]

 	(virtualbox.library_ext.IConsole method)

 	register_on_vrde_server_changed() (virtualbox.library.IConsole method), [1]

 	(virtualbox.library_ext.IConsole method)

 	registered (virtualbox.library.IGuestFileRegisteredEvent attribute)

 	(virtualbox.library.IGuestProcessRegisteredEvent attribute)

 	(virtualbox.library.IGuestSessionRegisteredEvent attribute)

 	(virtualbox.library.IMachineRegisteredEvent attribute)

 	(virtualbox.library.IMediumRegisteredEvent attribute)

 	relative (virtualbox.library.GuestMouseEventMode attribute)

 	relative_supported (virtualbox.library.IMouse attribute)

 	release() (virtualbox.pool.MachinePool method)

 	release_keys() (virtualbox.library.IKeyboard method)

 	remote (virtualbox.library.IUSBDevice attribute)

 	(virtualbox.library.IUSBDeviceFilter attribute)

 	(virtualbox.library.SessionType attribute)

 	remote_console (virtualbox.library.IInternalSessionControl attribute)

 	remote_usb_devices (virtualbox.library.IConsole attribute), [1]

 	remove (virtualbox.library.INATRedirectEvent attribute)

 	remove() (virtualbox.library.IMachine method)

 	(virtualbox.library.IVFSExplorer method)

 	(virtualbox.library_ext.IMachine method)

 	remove_all_cpuid_leaves() (virtualbox.library.IMachine method)

 	remove_cpuid_leaf() (virtualbox.library.IMachine method)

 	remove_device_filter() (virtualbox.library.IUSBDeviceFilters method)

 	remove_dhcp_server() (virtualbox.library.IVirtualBox method)

 	remove_disk_encryption_password() (virtualbox.library.IConsole method), [1]

 	remove_formats() (virtualbox.library.IDnDBase method)

 	remove_nat_network() (virtualbox.library.IVirtualBox method)

 	remove_port_forward_rule() (virtualbox.library.INATNetwork method)

 	remove_redirect() (virtualbox.library.INATEngine method)

 	remove_shared_folder() (virtualbox.library.IConsole method), [1]

 	(virtualbox.library.IMachine method)

 	(virtualbox.library.IVirtualBox method)

 	remove_storage_controller() (virtualbox.library.IMachine method)

 	remove_usb_controller() (virtualbox.library.IMachine method)

 	remove_vm_slot_options() (virtualbox.library.IDHCPServer method)

 	removed (virtualbox.library.IStorageDeviceChangedEvent attribute)

 	replace (virtualbox.library.FsObjMoveFlags attribute)

 	(virtualbox.library.FsObjRenameFlag attribute)

 	report_vm_statistics() (virtualbox.library.IInternalMachineControl method)

 	reset (virtualbox.library.ScreenLayoutMode attribute)

 	reset() (virtualbox.library.IConsole method), [1]

 	(virtualbox.library.IMedium method)

 	reset_stats() (virtualbox.library.IMachineDebugger method)

 	resize() (virtualbox.library.IMedium method)

 	restore_snapshot() (virtualbox.library.IMachine method)

 	(virtualbox.library_ext.IConsole method)

 	restoring (virtualbox.library.MachineState attribute)

 	restoring_snapshot (virtualbox.library.MachineState attribute)

 	result_code (virtualbox.library.IProgress attribute)

 	(virtualbox.library.IVirtualBoxErrorInfo attribute)

 	result_detail (virtualbox.library.IVirtualBoxErrorInfo attribute)

 	resume() (virtualbox.library.IConsole method), [1]

 	resume_with_reason() (virtualbox.library.IInternalSessionControl method)

 	reuse() (virtualbox.library.IReusableEvent method)

 	reuse_single_connection (virtualbox.library.IVRDEServer attribute)

 	revision (virtualbox.library.IExtPackBase attribute)

 	(virtualbox.library.IUSBDevice attribute)

 	(virtualbox.library.IUSBDeviceFilter attribute)

 	(virtualbox.library.IVirtualBox attribute)

 	rgba (virtualbox.library.BitmapFormat attribute)

 	role_changed (virtualbox.library.GuestUserState attribute)

 	rtc_use_utc (virtualbox.library.IMachine attribute)

 	run_usb_device_filters() (virtualbox.library.IInternalMachineControl method)

 	running (virtualbox.library.MachineState attribute)

S

 	
 	save_settings() (virtualbox.library.IMachine method)

 	save_state (virtualbox.library.AutostopType attribute)

 	save_state() (virtualbox.library.IMachine method)

 	save_state_with_reason() (virtualbox.library.IInternalSessionControl method)

 	saved (virtualbox.library.MachineState attribute)

 	saving (virtualbox.library.MachineState attribute)

 	sb16 (virtualbox.library.AudioCodecType attribute)

 	scan_time (virtualbox.library.IGuestMultiTouchEvent attribute)

 	scancodes (virtualbox.library.IGuestKeyboardEvent attribute)

 	Scope (class in virtualbox.library)

 	scope (virtualbox.library.ISharedFolderChangedEvent attribute)

 	screen_id (virtualbox.library.IDisplaySourceBitmap attribute)

 	(virtualbox.library.IGuestMonitorChangedEvent attribute)

 	screen_shot_formats (virtualbox.library.ISystemProperties attribute)

 	ScreenLayoutMode (class in virtualbox.library)

 	scroll_lock (virtualbox.library.IKeyboardLedsChangedEvent attribute)

 	seamless (virtualbox.library.AdditionsFacilityType attribute)

 	seek() (virtualbox.library.IFile method)

 	self_signed (virtualbox.library.ICertificate attribute)

 	send_data() (virtualbox.library.IDnDTarget method)

 	serial_number (virtualbox.library.ICertificate attribute)

 	(virtualbox.library.IUSBDevice attribute)

 	(virtualbox.library.IUSBDeviceFilter attribute)

 	serial_port (virtualbox.library.ISerialPortChangedEvent attribute)

 	serial_port_count (virtualbox.library.ISystemProperties attribute)

 	server (virtualbox.library.ISerialPort attribute)

 	service (virtualbox.library.AdditionsFacilityClass attribute)

 	session (virtualbox.library.IGuestSessionEvent attribute)

 	(virtualbox.library.IVirtualBoxClient attribute)

 	session_changed (virtualbox.library.GuestUserState attribute)

 	session_name (virtualbox.library.IMachine attribute)

 	session_pid (virtualbox.library.IMachine attribute)

 	session_state (virtualbox.library.IMachine attribute)

 	sessions (virtualbox.library.IGuest attribute)

 	SessionState (class in virtualbox.library)

 	SessionType (class in virtualbox.library)

 	set_acl() (virtualbox.library.IFile method)

 	set_auto_discard_for_device() (virtualbox.library.IMachine method)

 	set_bandwidth_group_for_device() (virtualbox.library.IMachine method)

 	set_boot_order() (virtualbox.library.IMachine method)

 	set_cdrom() (virtualbox.library.IVirtualSystemDescription method)

 	set_configuration() (virtualbox.library.IDHCPServer method)

 	set_cpu() (virtualbox.library.IVirtualSystemDescription method)

 	set_cpu_property() (virtualbox.library.IMachine method)

 	set_cpuid_leaf() (virtualbox.library.IMachine method)

 	set_credentials() (virtualbox.library.IGuest method)

 	set_current_operation_progress() (virtualbox.library.IProgress method)

 	set_extra_data() (virtualbox.library.IMachine method)

 	(virtualbox.library.IVirtualBox method)

 	set_final_value() (virtualbox.library.IVirtualSystemDescription method)

 	set_final_values() (virtualbox.library.IVirtualSystemDescription method)

 	set_guest_property() (virtualbox.library.IMachine method)

 	set_guest_property_value() (virtualbox.library.IMachine method)

 	set_hard_disk_controller_ide() (virtualbox.library.IVirtualSystemDescription method)

 	set_hard_disk_controller_sas() (virtualbox.library.IVirtualSystemDescription method)

 	set_hard_disk_controller_sata() (virtualbox.library.IVirtualSystemDescription method)

 	set_hard_disk_controller_scsi() (virtualbox.library.IVirtualSystemDescription method)

 	set_hard_disk_image() (virtualbox.library.IVirtualSystemDescription method)

 	set_hot_pluggable_for_device() (virtualbox.library.IMachine method)

 	set_hw_virt_ex_property() (virtualbox.library.IMachine method)

 	set_ids() (virtualbox.library.IMedium method)

 	set_location() (virtualbox.library.IMedium method)

 	set_memory() (virtualbox.library.IVirtualSystemDescription method)

 	set_name() (virtualbox.library.IVirtualSystemDescription method)

 	set_network_adapter() (virtualbox.library.IVirtualSystemDescription method)

 	set_network_settings() (virtualbox.library.INATEngine method)

 	set_next_operation() (virtualbox.library.IProgress method)

 	set_no_bandwidth_group_for_device() (virtualbox.library.IMachine method)

 	set_processed() (virtualbox.library.IEvent method)

 	set_properties() (virtualbox.library.IMedium method)

 	set_property() (virtualbox.library.IAudioAdapter method)

 	(virtualbox.library.IMedium method)

 	(virtualbox.library.INetworkAdapter method)

 	set_register() (virtualbox.library.IMachineDebugger method)

 	set_registers() (virtualbox.library.IMachineDebugger method)

 	set_screen_layout() (virtualbox.library.IDisplay method)

 	set_seamless_mode() (virtualbox.library.IDisplay method)

 	set_settings_file_path() (virtualbox.library.IMachine method)

 	set_settings_secret() (virtualbox.library.IVirtualBox method)

 	set_size() (virtualbox.library.IFile method)

 	set_soundcard() (virtualbox.library.IVirtualSystemDescription method)

 	set_storage_controller_bootable() (virtualbox.library.IMachine method)

 	set_usb_controller() (virtualbox.library.IVirtualSystemDescription method)

 	set_video_mode_hint() (virtualbox.library.IDisplay method)

 	set_visible_region() (virtualbox.library.IFramebuffer method)

 	set_vrde_property() (virtualbox.library.IVRDEServer method)

 	setting_up (virtualbox.library.MachineState attribute)

 	settings_aux_file_path (virtualbox.library.IMachine attribute)

 	settings_file (virtualbox.library.VirtualSystemDescriptionType attribute)

 	settings_file_path (virtualbox.library.IMachine attribute)

 	(virtualbox.library.IVirtualBox attribute)

 	settings_modified (virtualbox.library.IMachine attribute)

 	SettingsVersion (class in virtualbox.library)

 	setup_metrics() (virtualbox.library.IPerformanceCollector method)

 	shape (virtualbox.library.IMousePointerShape attribute)

 	(virtualbox.library.IMousePointerShapeChangedEvent attribute)

 	shareable (virtualbox.library.MediumType attribute)

 	shared (virtualbox.library.LockType attribute)

 	(virtualbox.library.SessionType attribute)

 	shared_folder (virtualbox.library.DeviceType attribute)

 	shared_folders (virtualbox.library.IConsole attribute), [1]

 	(virtualbox.library.IMachine attribute)

 	(virtualbox.library.IVirtualBox attribute)

 	
 	short_name (virtualbox.library.IHostNetworkInterface attribute)

 	show_console_window() (virtualbox.library.IMachine method)

 	show_license (virtualbox.library.IExtPackBase attribute)

 	signature_algorithm_name (virtualbox.library.ICertificate attribute)

 	signature_algorithm_oid (virtualbox.library.ICertificate attribute)

 	silent (virtualbox.library.IStorageDeviceChangedEvent attribute)

 	single_step (virtualbox.library.IMachineDebugger attribute)

 	size (virtualbox.library.IMedium attribute)

 	sleep_button() (virtualbox.library.IConsole method), [1]

 	slip (virtualbox.library.HostNetworkInterfaceMediumType attribute)

 	slot (virtualbox.library.INATRedirectEvent attribute)

 	(virtualbox.library.INetworkAdapter attribute)

 	(virtualbox.library.IParallelPort attribute)

 	(virtualbox.library.ISerialPort attribute)

 	snapshot (virtualbox.library.Reason attribute)

 	snapshot_count (virtualbox.library.IMachine attribute)

 	snapshot_event (virtualbox.library.VBoxEventType attribute)

 	snapshot_folder (virtualbox.library.IMachine attribute)

 	snapshot_id (virtualbox.library.ISnapshotEvent attribute)

 	snapshotting (virtualbox.library.MachineState attribute)

 	socket (virtualbox.library.FsObjType attribute)

 	sol_audio (virtualbox.library.AudioDriverType attribute)

 	source (virtualbox.library.IEvent attribute)

 	spawning (virtualbox.library.SessionState attribute)

 	speed (virtualbox.library.IUSBDevice attribute)

 	stac9221 (virtualbox.library.AudioCodecType attribute)

 	stac9700 (virtualbox.library.AudioCodecType attribute)

 	standard (virtualbox.library.MediumVariant attribute)

 	standby (virtualbox.library.FaultToleranceState attribute)

 	start (virtualbox.library.GuestSessionWaitForFlag attribute)

 	(virtualbox.library.GuestSessionWaitResult attribute)

 	(virtualbox.library.ProcessWaitForFlag attribute)

 	(virtualbox.library.ProcessWaitResult attribute)

 	start() (virtualbox.library.IDHCPServer method)

 	(virtualbox.library.INATNetwork method)

 	start_event (virtualbox.library.INATNetworkStartStopEvent attribute)

 	started (virtualbox.library.GuestSessionStatus attribute)

 	(virtualbox.library.ProcessStatus attribute)

 	starting (virtualbox.library.GuestSessionStatus attribute)

 	(virtualbox.library.MachineState attribute)

 	(virtualbox.library.ProcessStatus attribute)

 	state (virtualbox.library.IConsole attribute), [1]

 	(virtualbox.library.IGuestUserStateChangedEvent attribute)

 	(virtualbox.library.IHostUSBDevice attribute)

 	(virtualbox.library.IMachine attribute)

 	(virtualbox.library.IMachineStateChangedEvent attribute)

 	(virtualbox.library.IMedium attribute)

 	(virtualbox.library.ISession attribute)

 	(virtualbox.library.ISessionStateChangedEvent attribute)

 	(virtualbox.library.IStateChangedEvent attribute)

 	state_details (virtualbox.library.IGuestUserStateChangedEvent attribute)

 	state_file_path (virtualbox.library.IMachine attribute)

 	statistics_update_interval (virtualbox.library.IGuest attribute)

 	status (virtualbox.library.GuestSessionWaitForFlag attribute)

 	(virtualbox.library.GuestSessionWaitResult attribute)

 	(virtualbox.library.IAdditionsFacility attribute)

 	(virtualbox.library.IFile attribute)

 	(virtualbox.library.IGuestFileStateChangedEvent attribute)

 	(virtualbox.library.IGuestProcess attribute)

 	(virtualbox.library.IGuestProcessInputNotifyEvent attribute)

 	(virtualbox.library.IGuestProcessStateChangedEvent attribute)

 	(virtualbox.library.IGuestSession attribute)

 	(virtualbox.library.IGuestSessionStateChangedEvent attribute)

 	(virtualbox.library.IHostNetworkInterface attribute)

 	(virtualbox.library.IProcess attribute)

 	(virtualbox.library.ProcessWaitResult attribute)

 	std_err (virtualbox.library.ProcessOutputFlag attribute)

 	(virtualbox.library.ProcessWaitForFlag attribute)

 	(virtualbox.library.ProcessWaitResult attribute)

 	std_in (virtualbox.library.ProcessWaitForFlag attribute)

 	(virtualbox.library.ProcessWaitResult attribute)

 	std_out (virtualbox.library.ProcessWaitForFlag attribute)

 	(virtualbox.library.ProcessWaitResult attribute)

 	stop() (virtualbox.library.IDHCPServer method)

 	(virtualbox.library.INATNetwork method)

 	stopping (virtualbox.library.MachineState attribute)

 	storage_controllers (virtualbox.library.IMachine attribute)

 	storage_device (virtualbox.library.IStorageDeviceChangedEvent attribute)

 	StorageBus (class in virtualbox.library)

 	StorageControllerType (class in virtualbox.library)

 	strip_all_ma_cs (virtualbox.library.ExportOptions attribute)

 	strip_all_non_natma_cs (virtualbox.library.ExportOptions attribute)

 	stuck (virtualbox.library.MachineState attribute)

 	subject_name (virtualbox.library.ICertificate attribute)

 	subject_public_key (virtualbox.library.ICertificate attribute)

 	subject_unique_identifier (virtualbox.library.ICertificate attribute)

 	success (virtualbox.library.IHostPCIDevicePlugEvent attribute)

 	super_p (virtualbox.library.USBConnectionSpeed attribute)

 	super_plus (virtualbox.library.USBConnectionSpeed attribute)

 	supports_absolute (virtualbox.library.IMouseCapabilityChangedEvent attribute)

 	supports_multi_touch (virtualbox.library.IMouseCapabilityChangedEvent attribute)

 	supports_relative (virtualbox.library.IMouseCapabilityChangedEvent attribute)

 	symlink (virtualbox.library.FsObjType attribute)

 	symlink_create() (virtualbox.library.IGuestSession method)

 	symlink_exists() (virtualbox.library.IGuestSession method)

 	symlink_read() (virtualbox.library.IGuestSession method)

 	SymlinkReadFlag (class in virtualbox.library)

 	SymlinkType (class in virtualbox.library)

 	system (virtualbox.library.AdditionsRunLevelType attribute)

 	system_properties (virtualbox.library.IVirtualBox attribute)

T

 	
 	take_screen_shot() (virtualbox.library.IDisplay method)

 	take_screen_shot_to_array() (virtualbox.library.IDisplay method)

 	take_snapshot() (virtualbox.library.IMachine method)

 	tcp (virtualbox.library.NATProtocol attribute)

 	(virtualbox.library.PortMode attribute)

 	tcp_networking (virtualbox.library.MediumFormatCapabilities attribute)

 	teleport() (virtualbox.library.IConsole method), [1]

 	teleported (virtualbox.library.MachineState attribute)

 	teleporter_address (virtualbox.library.IMachine attribute)

 	teleporter_enabled (virtualbox.library.IMachine attribute)

 	teleporter_password (virtualbox.library.IMachine attribute)

 	teleporter_port (virtualbox.library.IMachine attribute)

 	teleporting (virtualbox.library.MachineState attribute)

 	teleporting_in (virtualbox.library.MachineState attribute)

 	teleporting_paused_vm (virtualbox.library.MachineState attribute)

 	temporary (virtualbox.library.IMachineDataChangedEvent attribute)

 	temporary_eject (virtualbox.library.IMediumAttachment attribute)

 	temporary_eject_device() (virtualbox.library.IMachine method)

 	terminate (virtualbox.library.GuestSessionWaitForFlag attribute)

 	(virtualbox.library.GuestSessionWaitResult attribute)

 	(virtualbox.library.ProcessWaitForFlag attribute)

 	(virtualbox.library.ProcessWaitResult attribute)

 	terminate() (virtualbox.library.IGuestProcess method)

 	(virtualbox.library.IProcess method)

 	terminated (virtualbox.library.AdditionsFacilityStatus attribute)

 	(virtualbox.library.GuestSessionStatus attribute)

 	terminated_abnormally (virtualbox.library.ProcessStatus attribute)

 	terminated_normally (virtualbox.library.ProcessStatus attribute)

 	terminated_signal (virtualbox.library.ProcessStatus attribute)

 	terminating (virtualbox.library.AdditionsFacilityStatus attribute)

 	(virtualbox.library.GuestSessionStatus attribute)

 	(virtualbox.library.ProcessStatus attribute)

 	
 	text (virtualbox.library.IVirtualBoxErrorInfo attribute)

 	tftp_boot_file (virtualbox.library.INATEngine attribute)

 	tftp_next_server (virtualbox.library.INATEngine attribute)

 	tftp_prefix (virtualbox.library.INATEngine attribute)

 	third_party (virtualbox.library.AdditionsFacilityClass attribute)

 	time_offset (virtualbox.library.IBIOSSettings attribute)

 	time_remaining (virtualbox.library.IProgress attribute)

 	time_stamp (virtualbox.library.ISnapshot attribute)

 	timed_out_abnormally (virtualbox.library.GuestSessionStatus attribute)

 	(virtualbox.library.ProcessStatus attribute)

 	timed_out_killed (virtualbox.library.GuestSessionStatus attribute)

 	(virtualbox.library.ProcessStatus attribute)

 	timeout (virtualbox.library.GuestSessionWaitResult attribute)

 	(virtualbox.library.IGuestSession attribute)

 	(virtualbox.library.IProgress attribute)

 	(virtualbox.library.ProcessWaitResult attribute)

 	TouchContactState (class in virtualbox.library)

 	trace_enabled (virtualbox.library.INetworkAdapter attribute)

 	trace_file (virtualbox.library.INetworkAdapter attribute)

 	tracing_config (virtualbox.library.IMachine attribute)

 	tracing_enabled (virtualbox.library.IMachine attribute)

 	triple_fault_reset (virtualbox.library.CPUPropertyType attribute)

 	trusted (virtualbox.library.ICertificate attribute)

 	type_p (virtualbox.library.IAdditionsFacility attribute)

 	(virtualbox.library.IBandwidthGroup attribute)

 	(virtualbox.library.IEvent attribute)

 	(virtualbox.library.IFsObjInfo attribute)

 	(virtualbox.library.IMedium attribute)

 	(virtualbox.library.IMediumAttachment attribute)

 	(virtualbox.library.ISession attribute)

 	(virtualbox.library.IUSBController attribute)

 	(virtualbox.library.IUSBProxyBackend attribute)

 	(virtualbox.library.IVFSExplorer attribute)

U

 	
 	udp (virtualbox.library.NATProtocol attribute)

 	uid (virtualbox.library.IFsObjInfo attribute)

 	unavailable (virtualbox.library.USBDeviceState attribute)

 	undefined (virtualbox.library.FileStatus attribute)

 	(virtualbox.library.GuestSessionStatus attribute)

 	(virtualbox.library.ProcessInputStatus attribute)

 	(virtualbox.library.ProcessStatus attribute)

 	uninitialize() (virtualbox.library.IInternalSessionControl method)

 	uninstall() (virtualbox.library.IExtPackManager method)

 	unit (virtualbox.library.IPerformanceMetric attribute)

 	unix (virtualbox.library.PathStyle attribute)

 	unknown (virtualbox.library.AdditionsFacilityStatus attribute)

 	(virtualbox.library.FsObjType attribute)

 	(virtualbox.library.GuestUserState attribute)

 	(virtualbox.library.HostNetworkInterfaceMediumType attribute)

 	(virtualbox.library.HostNetworkInterfaceStatus attribute)

 	(virtualbox.library.PathStyle attribute)

 	(virtualbox.library.SymlinkType attribute)

 	unload_plug_in() (virtualbox.library.IMachineDebugger method)

 	unlock_machine() (virtualbox.library.ISession method)

 	unlock_media() (virtualbox.library.IInternalMachineControl method)

 	unlocked (virtualbox.library.GuestUserState attribute)

 	(virtualbox.library.SessionState attribute)

 	unlocking (virtualbox.library.SessionState attribute)

 	unmount_medium() (virtualbox.library.IMachine method)

 	unquoted_arguments (virtualbox.library.ProcessCreateFlag attribute)

 	unregister() (virtualbox.library.IMachine method)

 	unregister_callback() (in module virtualbox.events)

 	unregister_listener() (virtualbox.library.IEventSource method)

 	unregister_only (virtualbox.library.CleanupMode attribute)

 	unrestricted_execution (virtualbox.library.HWVirtExPropertyType attribute)

 	unspecified (virtualbox.library.Reason attribute)

 	up (virtualbox.library.HostNetworkInterfaceStatus attribute)

 	
 	update (virtualbox.library.FileCopyFlag attribute)

 	update() (virtualbox.library.IVFSExplorer method)

 	update_guest_additions() (virtualbox.library.IGuest method)

 	update_guest_addtions() (virtualbox.library_ext.IGuest method)

 	update_image (virtualbox.library.FramebufferCapabilities attribute)

 	update_machine_state() (virtualbox.library.IInternalSessionControl method)

 	update_state() (virtualbox.library.IInternalMachineControl method)

 	upper_ip (virtualbox.library.IDHCPServer attribute)

 	uptime (virtualbox.library.IMachineDebugger attribute)

 	usable (virtualbox.library.IExtPackBase attribute)

 	usb (virtualbox.library.DeviceType attribute)

 	(virtualbox.library.StorageControllerType attribute)

 	usb_controllers (virtualbox.library.IMachine attribute)

 	usb_device_filters (virtualbox.library.IMachine attribute)

 	usb_devices (virtualbox.library.IConsole attribute), [1]

 	usb_keyboard (virtualbox.library.KeyboardHIDType attribute)

 	usb_mouse (virtualbox.library.PointingHIDType attribute)

 	usb_multi_touch (virtualbox.library.PointingHIDType attribute)

 	usb_proxy_available (virtualbox.library.IMachine attribute)

 	usb_standard (virtualbox.library.IUSBController attribute)

 	usb_tablet (virtualbox.library.PointingHIDType attribute)

 	USBConnectionSpeed (class in virtualbox.library)

 	USBControllerType (class in virtualbox.library)

 	USBDeviceFilterAction (class in virtualbox.library)

 	USBDeviceState (class in virtualbox.library)

 	use_host_clipboard (virtualbox.library.IConsole attribute), [1]

 	use_host_io_cache (virtualbox.library.IStorageController attribute)

 	user (virtualbox.library.IGuestSession attribute)

 	(virtualbox.library.IVRDEServerInfo attribute)

 	user_flags (virtualbox.library.IFsObjInfo attribute)

 	user_name (virtualbox.library.IFsObjInfo attribute)

 	userland (virtualbox.library.AdditionsRunLevelType attribute)

 	uuid (virtualbox.library.MediumFormatCapabilities attribute)

V

 	
 	v1_0 (virtualbox.library.SettingsVersion attribute)

 	v1_1 (virtualbox.library.SettingsVersion attribute)

 	v1_10 (virtualbox.library.SettingsVersion attribute)

 	v1_11 (virtualbox.library.SettingsVersion attribute)

 	v1_12 (virtualbox.library.SettingsVersion attribute)

 	v1_13 (virtualbox.library.SettingsVersion attribute)

 	v1_14 (virtualbox.library.SettingsVersion attribute)

 	v1_15 (virtualbox.library.SettingsVersion attribute)

 	v1_16 (virtualbox.library.SettingsVersion attribute)

 	v1_2 (virtualbox.library.SettingsVersion attribute)

 	v1_3 (virtualbox.library.SettingsVersion attribute)

 	v1_3pre (virtualbox.library.SettingsVersion attribute)

 	v1_4 (virtualbox.library.SettingsVersion attribute)

 	v1_5 (virtualbox.library.SettingsVersion attribute)

 	v1_6 (virtualbox.library.SettingsVersion attribute)

 	v1_7 (virtualbox.library.SettingsVersion attribute)

 	v1_8 (virtualbox.library.SettingsVersion attribute)

 	v1_9 (virtualbox.library.SettingsVersion attribute)

 	v_box_guest_driver (virtualbox.library.AdditionsFacilityType attribute)

 	v_box_service (virtualbox.library.AdditionsFacilityType attribute)

 	v_box_tray_client (virtualbox.library.AdditionsFacilityType attribute)

 	v_box_vga (virtualbox.library.GraphicsControllerType attribute)

 	validity_period_not_after (virtualbox.library.ICertificate attribute)

 	validity_period_not_before (virtualbox.library.ICertificate attribute)

 	value (virtualbox.library.IExtraDataCanChangeEvent attribute)

 	(virtualbox.library.IExtraDataChangedEvent attribute)

 	(virtualbox.library.IGuestPropertyChangedEvent attribute)

 	variant (virtualbox.library.IMedium attribute)

 	VBoxError

 	VBoxErrorFileError

 	VBoxErrorHostError

 	VBoxErrorInvalidObjectState

 	VBoxErrorInvalidSessionState

 	VBoxErrorInvalidVmState

 	VBoxErrorIprtError

 	VBoxErrorNotSupported

 	VBoxErrorObjectInUse

 	VBoxErrorObjectNotFound

 	VBoxErrorPasswordIncorrect

 	VBoxErrorPdmError

 	VBoxErrorVmError

 	VBoxErrorXmlError

 	VBoxEventType (class in virtualbox.library)

 	vdi_zero_expand (virtualbox.library.MediumVariant attribute)

 	vendor_id (virtualbox.library.IUSBDevice attribute)

 	(virtualbox.library.IUSBDeviceFilter attribute)

 	version (virtualbox.library.IExtPackBase attribute)

 	(virtualbox.library.IUSBDevice attribute)

 	(virtualbox.library.IVirtualBox attribute)

 	version_normalized (virtualbox.library.IVirtualBox attribute)

 	
 	version_number (virtualbox.library.ICertificate attribute)

 	vetoable (virtualbox.library.VBoxEventType attribute)

 	vfs (virtualbox.library.MediumFormatCapabilities attribute)

 	VFSType (class in virtualbox.library)

 	vhwa (virtualbox.library.FramebufferCapabilities attribute)

 	video_capture_enabled (virtualbox.library.IMachine attribute)

 	video_capture_file (virtualbox.library.IMachine attribute)

 	video_capture_fps (virtualbox.library.IMachine attribute)

 	video_capture_height (virtualbox.library.IMachine attribute)

 	video_capture_max_file_size (virtualbox.library.IMachine attribute)

 	video_capture_max_time (virtualbox.library.IMachine attribute)

 	video_capture_options (virtualbox.library.IMachine attribute)

 	video_capture_rate (virtualbox.library.IMachine attribute)

 	video_capture_screens (virtualbox.library.IMachine attribute)

 	video_capture_width (virtualbox.library.IMachine attribute)

 	video_mode_supported() (virtualbox.library.IFramebuffer method)

 	viewport_changed() (virtualbox.library.IDisplay method)

 	virtio (virtualbox.library.NetworkAdapterType attribute)

 	virtual_box (virtualbox.library.IVirtualBoxClient attribute)

 	virtual_system_descriptions (virtualbox.library.IAppliance attribute)

 	virtual_time_rate (virtualbox.library.IMachineDebugger attribute)

 	VirtualBox (class in virtualbox)

 	virtualbox (module)

 	virtualbox.events (module)

 	virtualbox.library (module), [1]

 	virtualbox.library_base (module), [1]

 	virtualbox.library_ext (module)

 	virtualbox.pool (module)

 	VirtualSystemDescriptionType (class in virtualbox.library)

 	VirtualSystemDescriptionValueType (class in virtualbox.library)

 	visible (virtualbox.library.IFramebufferOverlay attribute)

 	(virtualbox.library.IMousePointerShape attribute)

 	(virtualbox.library.IMousePointerShapeChangedEvent attribute)

 	visible_region (virtualbox.library.FramebufferCapabilities attribute)

 	vm (virtualbox.library.IMachineDebugger attribute)

 	(virtualbox.library.LockType attribute)

 	vm_configs (virtualbox.library.IDHCPServer attribute)

 	vm_process_priority (virtualbox.library.IMachine attribute)

 	vmdk_esx (virtualbox.library.MediumVariant attribute)

 	vmdk_raw_disk (virtualbox.library.MediumVariant attribute)

 	vmdk_split2_g (virtualbox.library.MediumVariant attribute)

 	vmdk_stream_optimized (virtualbox.library.MediumVariant attribute)

 	vmsvga (virtualbox.library.GraphicsControllerType attribute)

 	vpid (virtualbox.library.HWVirtExPropertyType attribute)

 	vram_size (virtualbox.library.IMachine attribute)

 	vrde_auth_library (virtualbox.library.ISystemProperties attribute)

 	vrde_ext_pack (virtualbox.library.IVRDEServer attribute)

 	vrde_module (virtualbox.library.IExtPackBase attribute)

 	vrde_properties (virtualbox.library.IVRDEServer attribute)

 	vrde_server (virtualbox.library.IMachine attribute)

 	vrde_server_info (virtualbox.library.IConsole attribute), [1]

W

 	
 	w (virtualbox.library.IGuestMouseEvent attribute)

 	wait_flag_not_supported (virtualbox.library.GuestSessionWaitResult attribute)

 	(virtualbox.library.ProcessWaitResult attribute)

 	wait_for() (virtualbox.library.IGuestProcess method)

 	(virtualbox.library.IGuestSession method)

 	(virtualbox.library.IProcess method)

 	wait_for_array() (virtualbox.library.IGuestProcess method)

 	(virtualbox.library.IGuestSession method)

 	(virtualbox.library.IProcess method)

 	wait_for_async_progress_completion() (virtualbox.library.IProgress method)

 	wait_for_completion() (virtualbox.library.IProgress method)

 	wait_for_operation_completion() (virtualbox.library.IProgress method)

 	wait_for_process_start_only (virtualbox.library.ProcessCreateFlag attribute)

 	wait_for_std_err (virtualbox.library.ProcessCreateFlag attribute)

 	wait_for_std_out (virtualbox.library.ProcessCreateFlag attribute)

 	wait_for_update_start_only (virtualbox.library.AdditionsUpdateFlag attribute)

 	wait_processed() (virtualbox.library.IEvent method)

 	waitable (virtualbox.library.IEvent attribute)

 	web_service_auth_library (virtualbox.library.ISystemProperties attribute)

 	webcam_attach() (virtualbox.library.IEmulatedUSB method)

 	webcam_detach() (virtualbox.library.IEmulatedUSB method)

 	webcams (virtualbox.library.IEmulatedUSB attribute)

 	WebServiceManager (class in virtualbox)

 	white_out (virtualbox.library.FsObjType attribute)

 	
 	why_unusable (virtualbox.library.IExtPackBase attribute)

 	width (virtualbox.library.IFramebuffer attribute)

 	(virtualbox.library.IGuestMonitorChangedEvent attribute)

 	(virtualbox.library.IMousePointerShape attribute)

 	(virtualbox.library.IMousePointerShapeChangedEvent attribute)

 	win_id (virtualbox.library.IFramebuffer attribute)

 	(virtualbox.library.IShowWindowEvent attribute)

 	win_mm (virtualbox.library.AudioDriverType attribute)

 	writable (virtualbox.library.ISharedFolder attribute)

 	write (virtualbox.library.FileSharingMode attribute)

 	(virtualbox.library.LockType attribute)

 	write() (virtualbox.library.IAppliance method)

 	(virtualbox.library.IFile method)

 	(virtualbox.library.IGuestProcess method)

 	(virtualbox.library.IProcess method)

 	write_array() (virtualbox.library.IGuestProcess method)

 	(virtualbox.library.IProcess method)

 	write_at() (virtualbox.library.IFile method)

 	write_delete (virtualbox.library.FileSharingMode attribute)

 	write_lock (virtualbox.library.SessionType attribute)

 	write_only (virtualbox.library.FileAccessMode attribute)

 	write_physical_memory() (virtualbox.library.IMachineDebugger method)

 	write_virtual_memory() (virtualbox.library.IMachineDebugger method)

 	writethrough (virtualbox.library.MediumType attribute)

 	written (virtualbox.library.ProcessInputStatus attribute)

X

 	
 	x (virtualbox.library.IFramebufferOverlay attribute)

 	(virtualbox.library.IGuestMouseEvent attribute)

 	
 	x2_apic (virtualbox.library.CPUPropertyType attribute)

 	x_positions (virtualbox.library.IGuestMultiTouchEvent attribute)

 	xhot (virtualbox.library.IMousePointerShapeChangedEvent attribute)

Y

 	
 	y (virtualbox.library.IFramebufferOverlay attribute)

 	(virtualbox.library.IGuestMouseEvent attribute)

 	
 	y_positions (virtualbox.library.IGuestMultiTouchEvent attribute)

 	yhot (virtualbox.library.IMousePointerShapeChangedEvent attribute)

Z

 	
 	z (virtualbox.library.IGuestMouseEvent attribute)

Outstanding TODOs

Link remaining event types to event sources.

Need to figure out which event sources each of these events types belong to:

IStorageControllerChangedEvent
ICPUChangedEvent
ICPUExecutionCapChangedEvent

IGuestSessionStateChangedEvent
IGuestSessionRegisteredEvent
IGuestProcessRegisteredEvent
IGuestProcessStateChangedEvent
IGuestProcessInputNotifyEvent
IGuestProcessOutputEvent
IGuestFileRegisteredEvent
IGuestFileStateChangedEvent
IGuestFileOffsetChangedEvent
IGuestFileWriteEvent

IVRDEServerInfoChangedEvent
ICanShowWindowEvent

IMediumRegisteredEvent

IKeyboardLedsChangedEvent
IMouseCapabilityChangedEvent
IMousePointerShapeChangedEvent

IUSBControllerChangedEvent
IUSBDeviceStateChangedEvent
IRuntimeErrorEvent <-- this looks useful!

INATRedirectEvent
IHostPCIDevicePlugEvent
IVBoxSVCAvailabilityChangedEvent
IBandwidthGroupChangedEvent
IGuestMonitorChangedEvent
IStorageDeviceChangedEvent
INATNetworkChangedEvent
INATNetworkStartStopEvent
INATNetworkAlterEvent
INATNetworkCreationDeletionEvent
INATNetworkSettingEvent
INATNetworkPortForwardEvent

VirtualBox.nat_networks

Waiting for the VirtualBox team to implement this function :)... It’s going to
be super useful!

Roadmap

This is a rough roadmap for the first beta release of pyvbox.

Version 0.1 - Automate provisioning of VMs and Guest instrumentation

	Support code for the various event_source objects and their event types.

	A machine pool manager.

Version 0.2 - Stabilise, enhance and refine

	Add a set of base test libraries

	Thorough test for library_ext modules

Version 1.0 - Update to 5.0.x changes in vbox api

	Deprecate obsolete extensions

	Investigate odd platform issues (check if attributable to pyvbox).

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

_static/file.png

nav.xhtml

 Table of Contents

 		pyvbox

 		Introduction

 		Install

 		Getting started

 		Issues

 		Compatibility

 		Changelog

 		virtualbox – main module

 		Code reference

 		virtualbox.pool – machine pool management

 		Virtual Machine pool

 		Code reference

 		virtualbox.library_ext – extensions to virtualbox.library

 		Code reference

 		virtualbox.events – registration, listening and processing

 		Code reference

 		virtualbox.library – transform of VirtualBox.xidl

 		Code reference

 		virtualbox.library

 		virtualbox.library_base – base types used by library.py

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

